
CorSight2

OpenCamera

Reference Manual

Rev1.03-180323

Commercial-in-Confidence

23 March 2018

NET New Electronic Technology GmbH

Lerchenberg 7

86923 Finning, Germany

Tel: +49 8806 9234 0

Fax: +49 8806 9234 77

info@net-gmbh.com

www.net-gmbh.com

Revision History

Revision Date Author Modifications

Rev1.00 06/02/18 MK Initial Release

Rev1.01 23/02/18 MJ Added chapter 12: Custom Module SW Interface

Rev1.02 01/03/18 MJ Modified chapter 9.3: CorSight2 FPGA Flash Programming

Rev1.03 23/03/18 MK Added Chapter 6.4: Custom Module Configuration

Fixed wrong bit numbering for 8-bit RGB in Figure 7

Copyright © 2018 CorSight2 OpenCamera 2 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Table of Contents

Revision History...2

 1 CorSight2 Camera Overview..6

 1.1 CorSight2 OpenCamera Concept...6

 2 OpenCamera Development Kit (ODK)...7

 2.1 OpenCamera Pre-requisites...7

 2.2 OpenCamera Development Kit Installation...7

 2.2.1 OpenCamera Environment Variable Setup..7

 2.2.2 Vivado Installation Path and Version Setting...9

 3 OpenCamera Directory Structure..10

 3.1 OpenCamera Source Files..11

 3.2 OpenCamera Simulation Files...12

 3.2.1 OpenCamera Testbench..12

 3.2.2 OpenCamera Simulation Environment..13

 3.3 OpenCamera Synthesis Files...13

 3.4 Synthesis Initialization Files..13

 3.5 OpenCamera IP and FPGA Framework Source Files..14

 3.6 OpenCamera Documentation Files..14

 4 CorSight2 FPGA Architecture...15

 4.1 FPGA Framework Design Options..17

 5 Custom Module Architecture..18

 5.1.1 Custom Design Block..19

 5.1.2 Custom Module Configuration..19

 5.1.3 SystemBus Interface..19

 5.1.4 ImageBus Interface..19

 5.1.5 GPIO Interface...19

 5.1.6 MemoryBus Interface..20

 6 Custom Module Bus Interface Descriptions..21

 6.1 Module Infrastructure..22

 6.2 SystemBus Interface..22

 6.2.1 SystemBus Signal Description and Protocol...22

 6.2.2 SystemBus Read/Write Cycles...23

 6.2.3 SystemBus Address Space...25

 6.2.3.1 SystemBus Base Address...25

 6.2.3.2 SystemBus DDR3-RAM Access..25

 6.3 ImageBus Interface..26

 6.3.1 ImageBus Receive Port..26

 6.3.2 ImageBus Transmit Port...26

 6.3.3 ImageBus Pixel Transfer..27

 6.3.4 ImageBus Status Bus...27

 6.3.5 ImageBus Data Bus..29

 6.4 Custom Module Configuration..29

 6.5 GPIO Interface...30

 6.6 MemoryBus Interface..30

 6.6.1 MemoryBus Command Port..30

 6.6.2 MemoryBus Read Port...32

 6.6.3 MemoryBus Write Port..33

 7 Custom Module Example Designs..35

Copyright © 2018 CorSight2 OpenCamera 3 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 7.1 OpenCamera Default Design...35

 7.2 OpenCamera UserDesign..35

 7.3 OpenCamera LutDesign..35

 7.4 OpenCamera MemTest Design..36

 7.5 OpenCamera DiffPic Design...36

 7.6 OpenCamera Canny Filter Design...37

 7.7 OpenCamera BlockDemo Design..37

 7.8 OpenCamera ScaleD Design...37

 8 Custom Module Simulation...38

 8.1 Simulation File Structure...38

 8.1.1 Simulation TestBench Files..38

 8.1.1.1 Test Bench Source Files...38

 8.1.1.2 Test Bench Configuration Files..39

 8.2 Simulation Run-time Files...39

 8.2.1.1 Xsim Files...40

 8.3 Test Bench Initialisation File...40

 8.3.1.1 Simulation Section Parameters...41

 8.3.1.2 ImageMode Section Parameters...41

 8.3.1.3 ImageInput Section Parameters..42

 8.3.1.4 ImageCompare Section Parameters..43

 8.3.1.5 ImageOutput Section Parameters...43

 8.4 Simulation Command Script File..44

 8.5 Test Bench Log Messages..47

 8.6 Xsim Simulator..48

 8.6.1 Xsim TCL Simulation..48

 8.6.2 Xsim Windows Simulation..48

 9 OpenCamera FPGA Compilation..49

 9.1 OpenCamera TCL Compile Script...49

 9.2 OpenCamera Windows Batch Script...51

 9.3 CorSight2 FPGA Flash Programming...52

 10 Custom Module Design Implementation...53

 10.1 Modifying the existing UserDesign Example..53

 10.1.1 UserDesign Source Files..53

 10.1.1.1 Updating UserDesign Source Files..53

 10.1.1.2 Replacing UserDesign Source Files...53

 10.1.2 UserDesign Project File...54

 10.1.3 UserDesign Simulation..54

 10.1.3.1 Xsim Simulation...54

 10.1.3.2 Simulation Initialization...54

 10.1.4 UserDesign Limitations...54

 10.2 Creating a new Custom Module Design..55

 10.2.1 Custom Module Design Guidelines...55

 10.2.2 Custom Module Simulation...56

 11 CorSight2 ODK Release Upgrade...57

 12 Custom Module SW Interface...58

 12.1 GenICam Interface...58

 12.2 Address Space..59

 12.3 XML Features..60

 12.4 How to use the SW Interface...61

Copyright © 2018 CorSight2 OpenCamera 4 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 13 Imprint...63

Index of Tables

Table 1: Set_Customer_EnvVar.tcl Environment Setup Script..8

Table 2: Set_Vivado_Version.bat Environment Setup Script...9

Table 3: OpenCamera Directory Structure...11

Table 4: Custom Module Revision Number Setup...13

Table 5: CorSight2 FPGA Framework Resource Utilization...17

Table 6: VHDL Custom Module entity declaration..21

Table 7: ImageBus Pixel Status Decoding...27

Table 8: Custom Module Register Space...58

Table 9: Custom Module GenICam Features...59

Index of Figures

Figure 1: CorSight2 FPGA Block Diagram..16

Figure 2: Custom Module Architecture..18

Figure 3: SystemBus Write Cycle..24

Figure 4: SystemBus Read Cycle...24

Figure 5: ImageBus Pixel Transfer...27

Figure 6: ImageBus Status Frame Sequence..28

Figure 7: ImageBus Pixel Data Formats..29

Figure 8: MemoryBus Command Cycle...31

Figure 9: MemoryBus Read Cycle...32

Figure 10: MemoryBus Write Cycle..33

Figure 11: FPGA Flash Programming..51

Figure 12: cbcmaload options..51

Figure 13: Custom Module GenICam Interface...57

Copyright © 2018 CorSight2 OpenCamera 5 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 1 CorSight2 Camera Overview

This reference manual introduces the third-party OpenCamera design methodology for the

CorSight2 camera system. New user functions can be included in the image pipeline of the

CorSight2 FPGA by adding appropriately designed processing modules, which are referred to as

“Custom Modules”. Custom Modules can be designed and added by the customer without requiring

direct support from NET GmbH.

The CorSight2 vision system is an intelligent camera based on the Intel Atom E3845 Processor

operating under a Windows or Linux OS. Housed in a sealed IP67 cabinet, the camera is suitable to

be used in rough environments. CorSight2 supports a wide range of CCD and CMOS sensors and

uses a flexible C-Mount based lens system which incorporates a Flash Strobe Lighting Module to

provide optimal lighting conditions for image capture. To control image acquisition a versatile

trigger system is implemented based on TTL and Optocoupler inputs/outputs.

Image acquisition is handled inside the CorSight2 Artix-7 FPGA which serves as the interface

between the sensor and the Atom Processor. Image processing tasks performed in the CorSight2

camera system can be divided between the FPGA and the Atom Processor (Host). The FPGA is best

suited to perform data intensive tasks, such as:

• Image pre-processing

• Image encryption / compression

• Extraction, object detection / feature analysis

• 2D algorithms, point-to-point or neighbourhood operations

• Laser scan line analysis

Whereas the Processor is best suited to perform high-level, decision-based algorithms, the results of

which are communicated to the outside world (i.e. application).

For a detailed specification of the CorSight2 camera please refer to the camera data sheet.

 1.1 CorSight2 OpenCamera Concept

The OpenCamera concept introduces a simulation and compilation flow for the CorSight2 FPGA

which can be performed by the customer. The OpenCamera Development Kit (ODK) includes a

complete set of source files for all modules which make up the FPGA Framework in which the

Custom Module is embedded. Image input and output ports connect the Custom Module to the

FPGA Framework. A SystemBus interface is also provided to allow host access to the control and

status registers of the Custom Module. In addition, the Custom Module has direct access to a

dedicated 1-Gbit DDR3-RAM as well as to the Opto/TTL GPIO pins of the CorSight2 camera.

Having written a suitable Custom Module, the customer can proceed with compiling the entire

FPGA, load the resulting firmware file into the FPGA Flash device on CorSight2 and run image

acquisitions through the Custom Module function block.

This manual describes the OpenCamera development environment in detail and provides a step-by-

step guide to integrate a custom application into the CorSight2 camera.

Copyright © 2018 CorSight2 OpenCamera 6 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 2 OpenCamera Development Kit (ODK)

 2.1 OpenCamera Pre-requisites

The following pre-requisites have to be met before attempting to simulate or compile a CorSight2

OpenCamera project:

1. CorSight2 OpenCamera Development Kit (ODK), FPGA firmware revision 1.03 or later.

2. X86 compatible PC running on an MS-Windows (7.1 or 10.0 Pro, 64-bit) or Linux (Red Hat,

SUSE, CentOS, Ubuntu) operating system. Details of supported operating systems can be

found at https://www.xilinx.com/support/answers/54242.html

3. Xilinx Vivado 2017.3. The Webpack edition supports all Artix-7 FPGAs and is therefore

suitable to be used for CorSight2. The Vivado 2017.3 Webpack Edition can be downloaded

from the Xilinx website at: https://www.xilinx.com/support/download.html

 2.2 OpenCamera Development Kit Installation

The CorSight2 ODK is contained in a single archive file called:

CS2_OpenCam_Project_VerXX-YY.zip

“XX” indicates the major revision number and “YY” indicates the minor revision number of the

FPGA firmware release. This manual refers to FPGA firmware Ver01-03 (or later).

It is recommended to extract the entire archive to a directory on a computer where the Xilinx

Vivado FPGA synthesis and implementation software is installed. In this document it is assumed

that the ODK development system is extracted to a directory called:

<OpenCamDir>/...

All location references to the OpenCamera source files and directories made in this document are

defined relative to this path.

 2.2.1 OpenCamera Environment Variable Setup

Once the ODK is installed, the user must first update required environment variables used by

various OpenCamera compilation script files. The variables are defined in the following file:

<OpenCamDir>/CompileTools/Set_Customer_EnvVar.tcl

Table 1 shows the default content of Set_Customer_EnvVar.tcl. Please note that this file is an

executable TCL file, which therefore needs to adhere to correct TCL syntax.

Please Note: The path separators used in Set_Customer_EnvVar.tcl must adhere to TCL syntax.

MS-Windows paths definitions must therefore be changed using the forward slash ‘/’.

The required user information is defined in an environment variable called Cs2OpenCamCfg(). It

is recommended not to use spaces in the path names to avoid potential misinterpretation of the

intended directory targets.

Copyright © 2018 CorSight2 OpenCamera 7 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

#--
CorSight2 OpenCamera local environment variables
Copyright (C) 2017 NET GmbH. All Rights Reserved
#--

Set paths to OpenCamera source, compile and release directories.

IMPORTANT: Use the TCL path separator '/' in all OS environments!
Example: set Cs2OpenCamCfg(OpenCamDir) "C:/NET_GmbH/CorSight2/OpenCamera"

puts "-- \[Set_Customer_EnvVar.tcl\] Retrieving customer-defined local environment variables..."

set Cs2OpenCamCfg(OpenCamDir) "Customer_Path_Definition"
set Cs2OpenCamCfg(CompileDir) "Customer_Path_Definition"
set Cs2OpenCamCfg(ReleaseDir) "Customer_Path_Definition"

return -code ok Cs2OpenCamCfg

Table 1: Set_Customer_EnvVar.tcl Environment Setup Script

• Cs2OpenCamCfg(OpenCamDir): Path to the OpenCamera source directory into which the

archive has been extracted, i.e. <OpenCamDir>.

• Cs2OpenCamCfg(CompileDir): Path to the OpenCamera compile directory which will be

used when running FPGA synthesis/implementation. It is recommended to keep the length

of this path as short as possible since the ODK and Vivado add numerous levels of sub-

directories below the specified compile directory and the possibility exists that the

maximum path length of 260 characters under MS-Windows is exceeded during

compilation.

• Cs2OpenCamCfg(ReleaseDir): Path to the OpenCamera firmware release directory. After

successfully running an FPGA compilation, the OpenCamera scripts produce a firmware file

which will be copied from the compile directory to the release directory. The name of the

firmware file adheres to the required CorSight2 firmware naming convention.

Copyright © 2018 CorSight2 OpenCamera 8 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 2.2.2 Vivado Installation Path and Version Setting

Various OpenCamera batch files running under MS-Windows require the Vivado installation path

information in order to launch the Vivado tool. ODK version 01.03 only works in conjunction with

Vivado 2017.3. By default Vivado 2017.3 installs to a directory “C:/Xilinx/Vivado/2017.3” which

is the default path setting for the OpenCamera batch files.

Please note: It is highly recommended to install Vivado to the default location!

If Vivado has been installed to a different location the relevant ODK environment variables need to

change. The Vivado path variables are defined in:

<OpenCamDir>/CompileTools/Set_Vivado_Version.bat

Table 2 shows the top portion of the Vivado version file which the user must update if a non-default

Vivado installation path has been chosen. Once these variables have been defined the user is free to

simulate and compile the OpenCamera example designs.

::---
:: Project : CorSight2 - Custom Module
:: Title : Vivado Installation Path and Version Settings
:: Copyright (C) 2017 NET GmbH. All Rights Reserved
::---
@echo off

:: Set Vivado Installation Path and Version
set VivadoPath=C:\Xilinx\Vivado
set VivadoVer=2017.3

.

.

.

Table 2: Set_Vivado_Version.bat Environment Setup Script

Copyright © 2018 CorSight2 OpenCamera 9 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 3 OpenCamera Directory Structure

The CorSight2 OpenCamera Development Kit is partitioned into six subdirectories, as listed below:

• CompileTools: Contains the OpenCamera FPGA compile scripts.

• doc: Custom Module documentation (including this document).

• IP: Contains all Vivado IP cores used in the FPGA Framework logic. It also contains

encrypted design source files for all FPGA function blocks which (in combination with the

IP cores) make up the FPGA Framework logic.

• sim: Custom Module simulation test bench files.

• src: Custom Module HDL source code files and example designs.

• syn: FPGA synthesis and implementation script files, as well as Vivado project and

constraint files.

The complete directory structure of the CorSight2 ODK is shown in Table 3 and further explained

in the following paragraphs.

 +----------------------+
 | CorSight2 OpenCamera |
 | Development Kit |
 +----------------------+
 |
 |-- CompileTools
 |
 |-- doc
 |
 |-- IP
 | |-- DmaCtrl
 | |-- DualMCB
 | |-- LogicAnalyzer
 | |-- PcieCtrl
 | |-- SecureIp
 | |-- TechLib
 | |-- XadcMonitor
 |
 |-- src
 | |-- BlockDemo
 | |-- CannyFilter
 | |-- Default
 | |-- DiffPic
 | |-- LutDesign
 | |-- MemTest
 | |-- ScaleD
 | |-- UserDesign
 | |-- Wrapper
 |
 |-- syn
 | |-- InitFiles
 | |-- ScriptFiles
 | |

 continues next page...

Copyright © 2018 CorSight2 OpenCamera 10 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 | |
 | |-- ConstraintFiles
 | | |-- CS2_Rev1
 | | |-- CS2_Rev2
 | | |-- CS2_Rev3
 | |
 | |-- ProjectFiles
 | | |-- CS2_Rev1
 | | |-- CS2_Rev2
 | | |-- CS2_Rev3
 |
 |-- sim
 |
 |-- Simulation
 | |-- Custom_Canny
 | | |-- Xsim
 | |-- Custom_DiffPic
 | | |-- Xsim
 | |-- Custom_LutDesign
 | | |-- Xsim
 | |-- Custom_MemTest
 | | |-- Xsim
 | |-- Custom_ScaleD
 | | |-- Xsim
 | |-- Custom_UserDesign
 | | |-- Xsim
 | |
 | |-- Images
 |
 |-- TestBench
 |-- Chipscope
 |-- LogicAnalyzer
 |-- DDR3-RAM_1Gbit
 |-- MCB_SIM
 |-- MT41K64M16XX107
 |-- clocking
 |-- controller
 |-- ecc
 |-- ip_top
 |-- phy
 |-- ui

Table 3: OpenCamera Directory Structure

 3.1 OpenCamera Source Files

Custom Module example design files are located in the <OpenCamDir>/src subdirectory. This

directory is subdivided into 9 sub-sections:

• Default: Default Custom Module design files. Contains an empty Custom Module used to

compile a bare-bone Framework FPGA without any custom logic. There is no simulation

testbench setup for the default Custom Module. See Chapter 7.1 for more information.

• UserDesign: Custom Module user design files. Contains a recommended Framework for

new custom designs. Customers are encouraged to use and modify the UserDesign to

implement their own custom logic. See Chapter 7.2 for more information.

• LutDesign: Example Lookup-Table design. Contains a reference design of a Colour and

Monochrome Lookup-Table. Features demonstrated in this design include the use of the

ImageBus Receive and Transmit Ports and the usage of memory space within the

SystemBus address space (i.e. BlockRAMs). See Chapter 7.3 for more information.

Copyright © 2018 CorSight2 OpenCamera 11 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

• MemTest: Example DDR3-RAM memory test design. Runs read and write operations to the

DDR3-RAM and verifies the integrity of the DDR3-RAM interface. Can also be used as a

test design to gauge maximum achievable read/write data bandwidth to the DDR3-RAM.

MemTest does not involve ImageBus transfers, i.e. the ImageBus Transmit Port is directly

connected to the ImageBus Receive Port. See Chapter 7.4 for more information.

• DiffPic: Example design which calculates the difference between successive monochrome

images on a pixel-by-pixel basis. Demonstrates the use of the ImageBus and MemoryBus

Interfaces. See Chapter 7.5 for more information.

• CannyFilter: Example Canny Filter design. Contains a reference design of a Canny Filter

implementation. See Chapter 7.6 for more information.

• BlockDemo: This design generates an RGB block pattern overlay. A customized XML

description for control registers is provided. Image data can be either monochrome or RGB.

See Chapter 7.7 for more information.

• ScaleD: This design allows 2-dimensional downscaling of the ImageBus input data and

demonstrates how to implement image processing with different input and output image

sizes. Image data can be either monochrome or RGB. See Chapter 7.8 for more information.

• Wrapper: OpenCamera Wrapper configuration files. Contains VHDL constant definitions

for all Custom Module designs. Except for the CustomPkg.vhd file (see Chapter 6.4),

Wrapper files must not be modified.

 3.2 OpenCamera Simulation Files

Custom Module testbench and simulation files are located in the <OpenCamDir>/sim

subdirectory. All Custom Module example designs run off the same testbench which can be

configured to suit each example design.

 3.2.1 OpenCamera Testbench

The OpenCamera VHDL testbench files are located in <OpenCamDir>/sim/TestBench which

make up the simulation environment in which a Custom Module can be embedded. The testbench

does not include FPGA Framework logic, instead ImageBus and SystemBus stimuli modules are

used which work in conjunction with simulation scripts provided for each Custom Design.

The testbench has a separate configuration file for each custom design. Testbench configuration

files are named: CustomCfg_<CustomDesignName>.vhd and provide a reference to the

TestBench initialization file, located in the Simulation environment. Also, the type of DDR3-RAM

used during simulation is defined here.

The user can select to simulate the MCB/DDR3-RAM interface of the Custom Module with either a

fully functional 1 Gbit DDR3-RAM model provided by Micron Technology, Inc or use a scaled

down DDR3-RAM substitute model which has been specifically designed for the OpenCamera

simulation testbench. The advantage of the fully functional 1 Gbit DDR3-RAM model is that it

provides cycle-accurate simulations but at a reduced simulation speed.

The substitute model provides a small, functionally correct MCB/DDR3-RAM interface but does

not produce the exact same timing sequence as the fully functional model. Using the substitute

MCB/DDR3-RAM model significantly improves simulation times.

Copyright © 2018 CorSight2 OpenCamera 12 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 3.2.2 OpenCamera Simulation Environment

Pre-configured simulation scripts and simulation environments are provided for each Custom

Module example design. The relevant files are located in <OpenCamDir>/sim/Simulation. The

CorSight2 ODK supports simulations with the Xsim simulator which is part of the Vivado design

suite. Other simulation engines can be used but may require the customer to adapt the simulation

scripts to the new platform.

The OpenCamera example designs can be easily simulated in a few steps using the provided

simulation scripts. For more details on how to run a simulation please refer to Chapter 8.

 3.3 OpenCamera Synthesis Files

When starting an OpenCamera FPGA compilation the compile scripts require a list of Custom

Module source files. These files are provided for existing example designs and are located in the

<OpenCamDir>/syn directory. If new Custom Module designs are added by the user

corresponding InitFiles/CS2_<CustomName>_Init.tcl and ProjectFiles/CS2_Revx/CS2_Revx_

<Custom Name>.prj files must be added. “CS2_Revx” denotes the applicable CorSight2 board

revision number, x = [1..3].

 3.4 Synthesis Initialization Files

The <OpenCamDir>/syn/InitFiles directory contains files which are used to control the FPGA

synthesis/implementation flow. The files contain a number of user-definable parameters which the

user can set to the required values before running an FPGA compilation. There is one file for each

of the eight Custom Module example designs, referred to as CS2_xxx_Init.tcl (with “xxx” being a

reference to the design name). The files are TCL scripts, therefore TCL syntax must be adhered to.

Table 4 shows the initial content of the UserDesign initialization TCL script.

#--
Project : CorSight2 - Custom Module
Title : User-defined FPGA compile variables for UserDesign
#--
Copyright (c) 2017 NET New Electronic Technology GmbH
#--

Set the Custom Module revision number (two digits):
set CUSTOM_REV_NUM "01"

Set the Vivado exit mode at end of compilation [OPEN, CLOSE]
set VIVADO_MODE "CLOSE"

Select the required debug module [NONE, CHIPSCOPE, ANALYZER] (DEBUG mode only)
set CUSTOM_DEBUG_MODULE "CHIPSCOPE"

Select the required debug device [ILA1x128x1024, ILA1x256x1024] (DEBUG mode only)
set CUSTOM_DEBUG_DEVICE "ILA1x256x1024"

return -code ok

Table 4: Custom Module Revision Number Setup

• CUSTOM_REV_NUM defines the revision number for the Custom Module design. The

module designer can freely assign any 2-digit integer number. The chosen revision number

Copyright © 2018 CorSight2 OpenCamera 13 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

is added to the firmware file name after a successful FPGA compilation has been performed.

In the UserDesign, LutDesign and MemTest examples the CUSTOM_REV_NUM

parameter is also added to the HDL source files via a Version package file which is

automatically generated by the ODK compile scripts. In these examples the revision number

can be read from the SystemBus as a status register.

• VIVADO_MODE determines if the Vivado GUI remains open after the FPGA

implementation is complete [OPEN] or if Vivado automatically closes [CLOSE]. The

OPEN option is useful if the user wants to inspect the Vivado implementation results at the

end. The CLOSE option should be used when running multiple FPGA compilations in a

batch file setup.

• CUSTOM_DEBUG_MODULE is used to add the ChipScopePro or Vivado Logic

Analyzer IP to the FPGA compilation project, if so required. This parameter is available

only for the UserDesign, LutDesign and MemTest examples.

If CUSTOM_DEBUG_ MODULE is set to either “CHIPSCOPE” or “ANALYZER” a

corresponding IP instantiation (which must be present in the Custom Module HDL code) is

enabled. It is only used in Debug Mode which is invoked via a compilation command line

argument, described in Chapters 9.1 and 9.2.

• CUSTOM_DEBUG_DEVICE selects the ILA device which either ChipScopePro or the

Vivado Logic Analyzer uses. This parameter is available only for the UserDesign,

LutDesign and MemTest examples.

The “ILA1x128x1024” option selects a 128-bit wide and 1024 deep ILA device, whereas

the “ILA1x256x1024” selects a 256-bit wide and 1024 deep ILA device. Due to it’s wider

port width the “ILA1x256x1024” option requires more FPGA resources (BlockRAMs).

However, unless severe resource limitations apply for a given design the recommended

device is the 256-bit ILA option.

Please note: A ChipScope debug option only exists on specially prepared CorSight2 cameras. An

external JTAG connector to the CorSight2 camera is required to connect a Xilinx Platform Cable

USB II or another Xilinx compatible JTAG adapter. Please contact NET GmbH if a JTAG

connection is required.

 3.5 OpenCamera IP and FPGA Framework Source Files

The <OpenCamDir>/IP directory contains all Vivado IP cores used in the FPGA Framework logic.

It also contains encrypted CorSight2 design source files (in <OpenCamDir>/IP/SecureIp) which

in combination with the IP cores make up the FPGA Framework logic. The encrypted source files

can not be viewed but are decrypted by Vivado during the synthesis process. No other device or tool

is permitted to decrypt the OpenCamera source files.

This directory does not contain any user-modifiable files.

 3.6 OpenCamera Documentation Files

The <OpenCamDir>/doc directory contains information on the current FPGA firmware release and

the OpenCamera Reference Manual (this file). Also, control/status register map definition files for

the six Custom Module example designs are provided.

Copyright © 2018 CorSight2 OpenCamera 14 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 4 CorSight2 FPGA Architecture

The CorSight2 Artix-7 FPGA contains all functions/modules to control the image acquisition from

the sensor, process the pixel stream in an Image Pipeline and sending the image data to the Atom

processor via the DMA/PCI-Express Interface. The image stream also passes through a Frame

Buffer Controller which is used to temporarily store the incoming images.

The FPGA Framework consists of a number of core FPGA modules to handle the external FPGA

interfaces and to perform system level functions. The Framework modules are required in every

design implementation and include the Sensor Interface, PCIe Interface, DMA Controller,

Frame Buffer, SystemBus Master, Timers and other I/O modules. The FPGA block diagram is

shown in Figure 1.

The Sensor Interface receives sensor specific image and control data and presents the raw image

data on the ImageBus. The image stream passes through an (optional) image processing pipeline

before reaching the Custom Module. The ImageBus Pipeline contains the following functions:

• Defect Pixel Correction (DPC)

• Offset/Gain Control (OGC)

• Flat Field Correction (FFC)

• Bayer Decoder (BAY)

• Colour Conversion Matrix (CCM)

• Gamma Correction (GCOR)

The Custom Module has the option of storing images in it’s own, dedicated DDR3-RAM. A suitable

interface exists in the Custom Module to read and write data to the DDR3-RAM.

Having processed the incoming pixel stream, the Custom Module presents the modified image

stream on the ImageBus Transmit Port. This port is directly connected to the CorSight2 Frame

Buffer Controller to prepare the image to be send to the Atom Processor for further analysis and

display purposes.

A second optional image processing module is the Geometric Correction Module (GEO). As with

the ImageBus Pipeline the customer has the option of removing these modules from the FPGA

Framework by selecting a suitable Design option during the FPGA compilation process (see

Chapter 4.1). The removal of these modules frees up resources in the FPGA fabric which can be

utilized by the Custom Module design, if so required.

To allow for a flexible trigger based image acquisition a large number of Timer as well as TTL-

and/or Opto-based GPIO signals can be used. Timers are used to process incoming GPIO and

Sensor signals which in turn generate trigger and exposure pulses to the sensor. Timers can also

detect possible trigger mismatches, by detecting trigger signals while the sensor is busy.

Tied in with the trigger generation is the control of the inbuilt LED Flash Strobe Lighting device. To

guarantee proper image illumination at the time an image acquisition is made, the Flash Strobe

needs to be triggered a certain amount of time before acquisition is started. This process is also

handled by the Timer Module.

FPGA modules can be initialised by the Host via the SystemBus infrastructure. This bus system is

based on the Wishbone-like bus specification, which features separate Address, DataIn and DataOut

bus structures.

Copyright © 2018 CorSight2 OpenCamera 15 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Copyright © 2018 CorSight2 OpenCamera 16 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Figure 1: CorSight2 FPGA Block Diagram

DMA / PCIe
Interface

SystemBus
Master

Geo
Correction

Module
(opt)

LVPP
Pixel

Pipeline

FMB
Controller

PCI-Express

Sensor

TTL I/O

Opto I/O

LED-Flash

Snsr Trigger

Image Bus

SystemBus I/F

SystemBus Slave

SystemBus Master

External Signals
LVSB-SLAVE-BUS

LVSB-MASTER-BUS

LVPP Bus

MCB Bus

 FPGA
Clocks
Reset

I2C

SPI

Custom
Module

Clock / Reset

Sensor
Interface

ImageBus
Pipeline

(opt)

Timers
+

Misc.
Control

Modules

M
C

B
1

D
D

R
3
 R

A
M

1

M
C

B
0

D
D

R
3
 R

A
M

0

FPGA Framework

Optional Modules

Custom Module

External Modules
CorSight2 FPGA

 4.1 FPGA Framework Design Options

As shown in the CorSight2 FPGA Block Diagram (Figure 1) the internal logic blocks of FPGA can

be divided into 3 categories:

• FPGA Framework Modules (blue)

• Optional Image Processing Modules (green)

• Custom Module (yellow)

To provide a high degree of flexibility when compiling the CorSight2 FPGA the OpenCamera

Development Kit provides the option of eliminating certain modules from the compilation process

in order to gain more free FPGA resources for the Custom Module design. The following three

design options exist:

• Design-00 (DSG00): Includes all FPGA Framework modules as well as the ImageBus

Pipeline and the Geo-Correction Module.

• Design-01 (DSG01): Includes all FPGA Framework modules as well as the ImageBus

Pipeline. The Geo-Correction Module has been removed.

• Design-02 (DSG02): Includes all FPGA Framework modules. The ImageBus Pipeline and

the Geo-Correction Module have both been removed.

CorSight2 uses a Xilinx Artix-7 FPGA device (XC7A75T-FGG484-2) which can comfortably

accommodate the FPGA Framework logic as well as the optional image processing modules.

DESIGN-00 is therefore the standard FPGA configuration. However, if the Custom Module logic

requires large amounts of internal FPGA resources DESIGN-01 or DESIGN-02 can be used

instead. The customer can select the desired OpenCamera FPGA Design-ID at compile time.

The used and available FPGA resources for each of the three design options are shown in Table 5.

Copyright © 2018 CorSight2 OpenCamera 17 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Table 5: CorSight2 FPGA Framework Resource Utilization

Figure 2: Custom Module Architecture

 5 Custom Module Architecture

The OpenCamera Custom Module can be designed without reference to the overall workings of the

CorSight2 FPGA. All information required for a successful completion of a custom design is

contained within the Custom Module itself. The design only needs to adhere to the required bus

protocols connected to the module.

The recommended Custom Module layout includes a SystemBus interface and a Custom Design

Block which contains the user application, as shown in Figure 2. Custom Module configuration

parameters are provided in a separate package file which define important module constants and

type definitions.

The OpenCamera Development Kit contains several example designs intended to demonstrate how

to design, simulate and implement a custom design. The UserDesign, LutDesign or MemTest

adhere to the recommended Custom Module architecture shown in Figure 2.

The UserDesign is intended to be used by the application designer to expand the provided

UserDesign source files to implement a desired custom function. This approach has the advantage

of utilising the pre-configured implementation and simulation scripts without having to write the

entire design environment from scratch.

For a detailed description of the UserDesign and other example designs provided with the ODK see

Chapter 7.

Copyright © 2018 CorSight2 OpenCamera 18 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Custom
Module

C
tr

lR
e
g

ImageBus
Input Port

ImageBus
Output Port

S
ta

tR
e
g

M
e
m

 I
/F

SystemBus
 Port

GPIO
 Port

MCB/DDR3
 Port

SystemBus
Interface

Custom
Module

Configuration

Custom
Design Block

 5.1.1 Custom Design Block

To implement a clean and well structured Custom Module design, it is suggested to include the

application-specific design files in a separate Custom Design Block and to instantiate the

SystemBus Interface and the Custom Design Block in the top-level Custom Module file. This

approach separates the CorSight2-specific design elements from the application and encourages an

environment-independent design practice.

 5.1.2 Custom Module Configuration

Important Custom Module definitions are specified in a central VHDL configuration package. This

may include (but is not limited to) SystemBus and ImageBus related parameters. Template

definitions are provided in the UserDesign files to define the structure of control and status

registers for SystemBus interactions with the Module. Furthermore, the GPIO output pin

configuration is defined in this file.

Another package file is used to define the current version number of the Custom Module to be

implemented in the FPGA. This file is automatically generated by the FPGA compile script and

should not be modified by the user. For information on how to set the version number please refer

to Chapter 3.4.

 5.1.3 SystemBus Interface

The SystemBus Interface is used by the Host to communicate with the Custom Module and to

initialise the Module for the upcoming image processing task. Control and status registers (defined

in the Custom Module Configuration package) are allocated to the required address and data

locations in this design unit. The SystemBus Interface also includes the mandatory System ID status

registers at address location 0 which identifies the Module to the Host S/W.

The SystemBus Interface also provides an optional System Memory Interface, which directly

connects to the Custom Design Block in case a Host-configurable memory is present in the custom

design.

For a complete description of the SystemBus Interface please refer to Chapter 6.2.

 5.1.4 ImageBus Interface

The Custom Design Block connects to the ImageBus Receive and Transmit Ports to facilitate image

transfers in and out of the Custom Module. When generating image transfers on the ImageBus

Transmit port the Custom Design Block must produce a stream of fixed-sized images. The size of

transmitted images can differ from the size of received images.

For a complete description of the ImageBus Interface please refer to Chapter 6.3.

 5.1.5 GPIO Interface

The Custom Module can connect to the external GPIO pins of the CorSight2 camera, which consists

of 12 signals: 4x Opto outputs, 4x Opto inputs, 2x TTL output and 2 TTL input. GPIO signals can

be shared between the Custom Module and the System GPIO Handler. Each GPIO output can be

configured from within the Custom Module to determine if it is driven by the Module or the

Copyright © 2018 CorSight2 OpenCamera 19 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Handler. GPIO inputs are always available to both sections.

Please note: The TTL(1) pin is currently not connected to an external GPIO pin in a standard

CorSight2 camera configuration.

For a complete description of the GPIO Interface please refer to Chapter 6.5.

 5.1.6 MemoryBus Interface

The Custom Module has exclusive access to a 128MByte DDR3-RAM device which can be used

for image storage/retrieval functions or for other large-scale data applications.

The Memory Interface interacts with a Xilinx Memory Controller Block (MCB) IP which is located

in the FPGA Framework and which defines the protocol the interface must adhere to. The interface

is divided into 3 separate bus units, which facilitate the reading/writing processes to/from the

DDR3-RAM”

• The MemoryBus Command Port is used to issue read or write commands to the MCB

Controller in the FPGA Framework. Commands support read/write burst transfers of up 64

DWords in length.

• The MemoryBus Read Port is used to receive read data from the MCB which has previously

requested via the MemoryBus Command Port.

• The MemoryBus Write Port is used to transfer write data from the Custom Module to the

MCB. Write data must be transferred to the MCB before a corresponding Write Command is

issued.

For a complete description of the MemoryBus Interface please refer to Chapter 6.6

Copyright © 2018 CorSight2 OpenCamera 20 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 6 Custom Module Bus Interface Descriptions

The top level entity of the Custom Module has a predefined structure. The port/signal definitions

which connect the Custom Module to the FPGA Framework are shown in the VHDL entity

declaration in Table 6. To ensure a successful Custom Module integration, it is highly recommended

not to modify the entity declaration in any way. If a particular output port/signal is not used, the

Custom Module should tie the signal to it’s inactive state but it should never be removed. Unused

input signals can be ignored in the Custom Module, but should not be removed from the entity

declaration. The following chapters provide a detailed description for all Custom Module interfaces.

entity CustomModule is
 port (
 -- Module Infrastructure Signals
 SysClkxCI : in std_logic;
 SysRstxRI : in std_logic;
 ImgRstxRI : in std_logic;

 -- SystemBus Control Interface
 SysReqxMI : in std_logic;
 SysAckxMO : out std_logic;
 SysErrxMO : out std_logic;
 SysWrEnxMI : in std_logic;
 SysAddrxAI : in std_logic_vector(16 downto 0);
 SysWrDataxDI : in std_logic_vector(31 downto 0);
 SysRdDataxDO : out std_logic_vector(31 downto 0);

 -- Custom Module GPIO
 CustIoCtrlxMO : out std_logic_vector(5 downto 0);
 CustIoDataOutxDO : out std_logic_vector(5 downto 0);
 CustIoDataInxDI : in std_logic_vector(5 downto 0);

 -- ImageBus Receive Port
 ImgRxPixValxMI : in std_logic;
 ImgRxPixRdyxMO : out std_logic;
 ImgRxPixStatxSI : in std_logic_vector(2 downto 0);
 ImgRxPixDataxDI : in std_logic_vector(35 downto 0);

 -- ImageBus Transmit Port
 ImgTxPixValxMO : out std_logic;
 ImgTxPixRdyxMI : in std_logic;
 ImgTxPixStatxSO : out std_logic_vector(2 downto 0);
 ImgTxPixDataxDO : out std_logic_vector(35 downto 0);

 -- MemoryBus Command Port
 px_cmd_en_o : out std_logic;
 px_cmd_full_i : in std_logic;
 px_cmd_instr_o : out std_logic_vector(2 downto 0);
 px_cmd_bl_o : out std_logic_vector(5 downto 0);
 px_cmd_addr_o : out std_logic_vector(29 downto 0);

 -- MemoryBus Read Port
 px_rd_en_o : out std_logic;
 px_rd_empty_i : in std_logic;
 px_rd_data_i : in std_logic_vector(31 downto 0);

 -- MemoryBus Write Port
 px_wr_en_o : out std_logic;
 px_wr_full_i : in std_logic;
 px_wr_data_o : out std_logic_vector(31 downto 0));
end CustomModule;

Table 6: VHDL Custom Module entity declaration

Copyright © 2018 CorSight2 OpenCamera 21 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 6.1 Module Infrastructure

The Custom Module uses 3 general purpose infrastructure signals, as listed below:

• SysClkxCI: SystemBus/ImageBus Clock (150 MHz). Driven by the System Clock/Reset

Generator in the FPGA Framework. Used to clock the entire Custom Module logic,

including all SystemBus and ImageBus logic.

• SysRstxRI: SystemBus/ImageBus Reset. Driven by the System Clock/Reset Generator in

the FPGA Framework. SysRstxRI is active after power-up to ensure FPGA logic is

initialized to its default state. Used to reset the entire Custom Module logic, including all

SystemBus and ImageBus logic. The SysRstxRI is asserted (low-to-high transition)

asynchronously to SysClkxCI. Deasserting SysRstxRI (high-to-low transition) however is

performed synchronously to SysClkxCI.

• ImgRstxRI: ImageBus Reset. Driven by a control register in the FPGA Framework.

ImgRstxRI is used to reset the internal ImageBus data pipeline. It is asserted by the Host

(i.e. SynView) before an image transfer is started for the first time. ImgRstxRI should be

used to flush pixel data from the internal Custom Module pixel pipeline which may still be

present from a previous image transfer. ImgRstxRI is also asserted after power-up. Once

asserted, ImgRstxRI stays active for 4 SysClkxCI cycles. The Custom Module must reset its

internal pixel pipeline and control logic within this reset period.

Please note: ImgRstxRI is used regularly during operation, it must not be used to reset

SystemBus control registers.

 6.2 SystemBus Interface

The SystemBus is used by the Host Processor to interact with the Custom Module, to initialise

control registers and on-chip memory or to read status registers/memory. The SystemBus Master is

part of the FPGA Framework and interacts with the SystemBus Slave in the Custom Module via

read or write access cycles. All Master and Slave signals are synchronous to the SystemBus clock

signal SysClkxCI.

The SystemBus Interface only supports single cycle 32-bit data transfers, burst transfers or 8/16-bit

data transfers are not supported. The SystemBus address bus contains 17 address lines, hence the

maximal Custom Module SystemBus address space is 128 kByte.

 6.2.1 SystemBus Signal Description and Protocol

The SystemBus Interface consists of 7 signal groups:

• SysReqxMI: Driven by the SystemBus Master in the FPGA Framework to request a new

SystemBus read or write cycle.

• SysAckxMO: Driven by the SystemBus Slave (Custom Module) to terminate a pending

read or write cycle, if no error condition is present.

• SysErrxMO: Driven by the SystemBus Slave (Custom Module) to terminate a pending read

or write cycle, if an error condition has been detected. The error response from the Custom

Module is an optional feature, if it is not implemented, the Custom Module must terminate a

pending SystemBus cycle by asserting SysAckxMO.

• SysWrEnxMI: Driven by the SystemBus Master in the FPGA Framework to flag if a

SystemBus read cycle (SysWrEnxMI = ‘0’) or write cycle (SysWrEnxMI = ‘1’) is pending.

Copyright © 2018 CorSight2 OpenCamera 22 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

• SysAddr(16..0): Driven by the SystemBus Master in the FPGA Framework SysAddr(16..0)

is a byte address which identifies a register or memory location within the Custom Module

address space involved in the current SystemBus cycle. The SystemBus only supports 32-bit

read or write cycles, hence SysAddr(1..0) are always “00”.

• SysWrData(31..0): Driven by the SystemBus Master in the FPGA Framework with a 32-bit

data word which is written to a register or memory location addressed by SysAddr(16..0).

• SysRdData(31..0): Driven by the SystemBus Slave (Custom Module) with a 32-bit data

word read from a register or memory location addressed by SysAddr(16..0).

 6.2.2 SystemBus Read/Write Cycles

Figure 3 and Figure 4 show the basic read and write cycles, as described below:

In order to initiate a SystemBus cycle the Master asserts the SysReqxMI signal at the rising edge of

SysClkxCI together with a valid register/memory address on SysAddrxAI(16..0). If a write cycle is

performed SysWrEnxMI is driven high and a valid data word is placed on SysWrDataxDI(31..0).

If the Master wants to perform a read operation SysWrEnxMI is driven low.

Upon detecting a high level on SysReqxMI the Slave device (Custom Module) performs the

requested cycle. During write operations SysWrDataxDI(31..0) is stored at the requested

register/memory location. For read operations, the Slave retrieves the requested data and places it

on the SysRdDataxDO(31..0) bus.

When the Slave has completed the access cycle and no error condition has been detected, it asserts

SysAckxMO to inform the Host to end the request. In response to SysAckxMO = ‘1’ the Master

deasserts SysReqxMI. The Slave can at this point deassert SysAckxMO to allow the next transfer

cycle to start on the following clock cycle or alternatively it can wait until it detects SysReqxMI =

‘0’.

If an error condition (such as an address to a non-existing register/memory location, or similar) has

been detected, the SystemBus Slave has the option of terminating the access by asserting

SysErrxMO. This informs the Host that the requested cycle has not been completed successfully.

The assertion/de-assertion of SysErrxMO follows the same protocol as SysAckxMO, described

above. The error response signal SysErrxMO is an optional feature and it is up to the designer of

the SystemBus Slave Interface to implement it or alternatively ignore the error and terminate every

cycle with SysAckxMO.

At the start of a new access cycle the SystemBus Master is permitted to assert SysReqxMI only if

SysAckxMO/SysErrxMO has been driven to a low level by the Slave. SysReqxMI is always

driven low for at least one clock cycle between two successive SystemBus cycles.

Copyright © 2018 CorSight2 OpenCamera 23 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Copyright © 2018 CorSight2 OpenCamera 24 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Figure 3: SystemBus Write Cycle

Figure 4: SystemBus Read Cycle

SysClkxCI

SysReqxMI

 SysAddr_0

SysAckxMO

1 2 3 4

SysWrEnxMI

SysWrData_0

SysErrxMO

SysAddrxAI(16..0)

SysWrDataxDI(31..0)

SysRdDataxDO(31..0)

SysAddrxAI(16..0)

SysWrDataxDI(31..0)

SysRdDataxDO(31..0)

 SysAddr_0

1 2 3 4

SysRdData_0

SysClkxCI

SysReqxMI

SysAckxMO

SysWrEnxMI

SysErrxMO

 6.2.3 SystemBus Address Space

The internal SystemBus address space of the Custom Module can be freely allocated to module

register or memory space. The SysAddrxAI bus is limited to 17 address lines which allows for a

maximum address space of 128kByte. It is recommended (but not mandatory) to place control and

status registers into the lower address range. If memory space is defined in the Module, it is

recommended to place this in the upper portion of the available address space, i.e. at address

0x10000+

While the internal Module address space if free to be used by the application, one system

requirement has to be implemented in every Module. A Custom Module ID status register must be

located at Address 0 of the Module address space. This register must be present and must use a

fixed bit format as shown below:

• Bit 0..9: Custom-Module-ID: A pre-determined system identifier is used to determine that

the associated module within the larger CorSight2 environment belongs to a Custom

Module. The Custom-Module-ID opcode is fixed at 47 (0x2F). Do not modify.

• Bit 10..20: Custom-Version-ID: The version number of the Custom Module design can be

freely chosen by the User.

• Bit 21..31: Custom-Design-ID: Identifies the Custom Module design. The Custom-Design-

ID can be defined by the User in the CustomPkg.vhd package file (see Chapter 6.4)

 6.2.3.1 SystemBus Base Address

The SystemBus Interface of the Custom Module is controlled by the SystemBus Master, which is

located within the FPGA Framework. The global address mapping for all CorSight2 SystemBus

Slave interfaces is performed by the Master module which places the 128kByte address space for

the Custom Module at address 0x300000 to 0x31FFFF.

 6.2.3.2 SystemBus DDR3-RAM Access

The DDR3-RAM which is attached to the Memory Bus of the Custom Module can be directly

accessed by the Host via a dedicated SystemBus Slave interface. The DDR3-RAM Slave interface

is part of the FPGA Framework. Therefore the Custom Module does not need to implement a

SystemBus-to-MemoryBus Bridge function if Host access to the RAM is required. The DDR3-

RAM is defined within the global CorSight2 address space at address 0x60000000 to

0x07FFFFFF.

Please Note: CorSight2 has an internal address range of 2 GByte which is mapped onto the external

64 MByte Host address space via special SystemBus address map registers. All accesses to the

internal address space above 0x1000000 (16 Mbyte) require setting a SystemBus Address Map

Register followed by the read/write access to the mapped address space.

Copyright © 2018 CorSight2 OpenCamera 25 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 6.3 ImageBus Interface

The ImageBus is a synchronous, point-to-point connection between one ImageBus source device

(Master) and one ImageBus destination device (Slave). The Custom Module receives pixel data

from the Sensor Interface or the ImageBus Pipeline on the ImageBus Receive Interface. Pixel data

generated in the Custom Module is transferred back to the FPGA Framework via the ImageBus

Transmit Interface.

 6.3.1 ImageBus Receive Port

The ImageBus Receive Interface consists of 4 signal groups:

• ImgRxPixValxMI: ImageBus Receive Pixel Valid. Driven by the ImageBus Master in the

FPGA Framework to indicate a valid pixel transfer.

• ImgRxPixRdyxMO: ImageBus Receive Pixel Ready. Driven by the Custom Module to

indicate that the Module is ready to receive pixel data. ImgRxPixRdyxMO is not used on

CorSight2, tie permanently to ‘1’.

• ImgRxPixStatxSI(2..0): ImageBus Receive Pixel Status. Driven by the ImageBus Master in

FPGA Framework to indicate the status of the currently transferred pixel data.

• ImgRxPixDataxDI(35..0): ImageBus Receive Pixel Data. Driven by the ImageBus Master

in FPGA Framework to transfer pixel data from the ImageBus Master to the Custom

Module.

 6.3.2 ImageBus Transmit Port

The ImageBus Transmit Interface also consists of 4 signal groups:

• ImgTxPixValxMO: ImageBus Transmit Pixel Valid. Driven by the Custom Module to

indicate a valid pixel transfer.

• ImgTxPixRdyxMI: ImageBus Transmit Pixel Ready. Driven by the FPGA Framework to

indicate that the ImageBus Slave is ready to receive pixel data. ImgTxPixRdyxMI is not

used on CorSight2, it is permanently tied to ‘1’.

• ImgTxPixStatxSO(2..0): ImageBus Transmit Pixel Status. Driven by the Custom Module to

indicate the status of the currently transferred pixel data.

• ImgTxPixDataxDO(35..0): ImageBus Transmit Pixel Data. Driven by the Custom Module

to transfer pixel data from the Custom Module to the ImageBus Receiver in the FPGA

Framework.

Note: Since the ImageBus Receive and Transmit Interfaces are functionally identical, further

references to their respective signal names are made in generic terms, i.e. ImgPixVal, ImgPixRdy,

ImgPixStat and ImgPixData.

Copyright © 2018 CorSight2 OpenCamera 26 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 6.3.3 ImageBus Pixel Transfer

When an ImageBus Master wants to transfer pixel data, it asserts the pixel status (ImgPixStat) and

data (ImgPixData) onto the ImageBus with the rising edge of SysClkxCI. At the same time the

pixel valid signal (ImgPixVal) is asserted high. The Slave samples all signals and upon detecting

ImgPixVal high, latches the ImgPixStat and ImgPixData. Since there is no flow control

implemented in the ImageBus architecture (the ImgPixRdy signal is not used) the Slave device

must be able to accept the pixel data unconditionally at any time. A pixel transfer is deemed to have

taken place at the rising edge of SysClkxCI when the ImgPixVal signal is asserted. Please refer to

Figure 5 as an illustration of valid pixel transfers. In this example the Master transfers 3 pixels in

successive clock cycles.

 6.3.4 ImageBus Status Bus

The ImageBus Master must accompany every pixel data with a relevant status information to

indicate the relative position of the data with a frame. ImgPixStat is a 3-bit bus and the decoding is

shown in Table 7.

ImgPixStat(2..0) Status Decoding

0 None (inside frame)

1 Start of Frame (SOF)

2 Start of Single Line Frame (SOSF) (LineScan)

3 (not used)

4 Start of Line (SOL)

5 Start of Last Line (SOLL)

6 End of Line (EOL)

7 Error (ERR)

Table 7: ImageBus Pixel Status Decoding

Copyright © 2018 CorSight2 OpenCamera 27 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Figure 5: ImageBus Pixel Transfer

 ImgPixStat(2..0)

ImgPixData(35..0)

 SysClkxCI

 ImgPixVal

 PixStat_0 PixStat_1 PixStat_2

 PixData_0 PixData_1 PixData_2

 ImgPixRdy not used

1 2 3 4

Figure 6 shows the positions of the pixel status as it appears in an image. The Start-of-Frame (SOF)

status indicates the first pixel of an area scan image. If a linescan sensor is connected to the

CorSight2 camera, SOF is replaced with the Start-of-Single-Line-Frame (SOSF) status. The first

pixel of every other line is labelled as Start-of-Line until the last line is reached. The first pixel of

the last line is referred to as Start-of-Last-Line (SOLL). The last pixel of every line is referred to as

End-of-Line (EOL). The smallest possible area scan image is a 2x2 image.

In normal operating mode the ImgStatus sequence is repeated for each frame transferred over the

ImageBus. However, if a transfer error occurs in the image pipeline the Master which is detecting

the error must assert the Error (ERR) status as soon as the error occurs regardless of the current

pixel position. Once an error status has been transmitted, the transfer of the remaining image is

immediately aborted and the Master must then wait until the beginning of the next frame before

commencing pixel transfers. In other words: After transmitting an Error status, the next valid pixel

transfer must be either an SOF or SOSF status.

Copyright © 2018 CorSight2 OpenCamera 28 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Figure 6: ImageBus Status Frame Sequence

Line 1
2
3

.

.

.

M

N*M Image

Pixel
1 2 3 4 . . . N

SOF

SOL

SOL

EOL

EOL

EOL

SOLL EOL

 6.3.5 ImageBus Data Bus

Pixel data is transferred over the 36-bit ImgPixData bus. For each valid pixel transfer (which is

indicated by ImgPixVal = ‘1’) ImgPixData(35..0) transports a single pixel from the ImageBus

Master to the Slave device. The pixel format is application dependant and can either be 8-bit or 12-

bit monochrome or 8-bit or 12-bit RGB. Pixel data is always MSB-aligned, i.e. monochrome pixel

data is aligned to ImgPixData(35). Figure 7 illustrates the bit allocation of pixel data on

ImgPixData(35..0) for each pixel format.

 6.4 Custom Module Configuration

A couple of user configurable Custom Module design options are available in a VHDL package file:

<OpenCamDir>/src/Wrapper/CustomPkg.vhd

The user configurable options are:

• Custom-Design-ID: A mechanism to uniquely identify a new Custom Module design is

provided via the Custom-Design-ID. Each distinct Custom design is allocated a unique ID

number. Once a Module-ID has been allocated to a specific Custom Design it must not be

re-allocated to any other Custom Module design.

To facilitate this mechanism a list of already defined Design-ID constants is presented in

CustomPkg.vhd. The User can add a new Design-ID to this list (which must be an integer

number with a value > 1023) and reference the ID in the SystemBus Interface design. The

Design-ID is part of the Custom Module ID status register, located at Address 0 of the

Module address space (see Chapter 6.2.3).

• Custom-Module-Bypass: For debug purposes, the FPGA Framework contains a mechanism

to include or exclude the Custom Module in the CorSight2 image flow. This is implemented

Copyright © 2018 CorSight2 OpenCamera 29 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Figure 7: ImageBus Pixel Data Formats

 8-bit RGB

 12-bit RGB

35 =. 24 23 =. 12 11 =. 0

Red Green Blue

35 28 23 =. 16 11 =. 4

Green

Red Blue

 8-bit Mono

 12-bit Mono

35 =. 24 23 =. 0

Mono

35 28 27 =. 0

Mono

Green

via an ImageBus multiplexer which can be dynamically controlled in Synview via the

“Custom Module Bypass” feature [ON/OFF] (see Chapter 12.3).

Custom designs which do not require this bypass feature can remove the multiplexer at

FPGA compile time by setting the cCUSTOM_BYPASS_EN constant in CustomPkg.vhd to

“False”.

 6.5 GPIO Interface

The Custom Module is capable of controlling the GPIO output pins of the FPGA as well as reading

the status of the GPIO input pins. While the GPIO input pins are always available to the Module,

the GPIO outputs require a special control port to configure the pins. The Custom Module GPIO

Interface consists of three ports, each being 6 bit wide. Bits(0..3) control GPIO OptoOut(0..3) and

Bits(4..5) control the GPIO TTLOut(0..1) pins.

Please Note: In a standard CorSight2 camera the TTL(1) pin is not made available to an external

GPIO pin.

• CustIoCtrlxMO(5..0): Driven by the Custom Module and determines if a GPIO output pin

is controlled by the GPIO Handler in the FPGA Framework (CustIoCtrlxMO(x) = 0) or by

the Custom Module (CustIoCtrlxMO(x) = 1). CustIoCtrlxMO is usually driven by a control

register defined in the SystemBus Interface of the Custom Module.

• CustIoDataOutxDO(5..0): If CustIoCtrlxMO(x) is set to '1' CustIoDataOutxDO(x)

determines the level of the associated Opto/TTL GPIO output pin of the FPGA. For the

OptoOut pins a low level on CustIoDataOutxDO(x) means the photo-diode in the Opto

driver is turned OFF, a high level turns the photo-diode ON.

• CustIoDataInxDO(5..0): Shows the current level of the Opto/TTL GPIO input pin.

For the control of the GPIO output pins it may be advisable to implement a firmware-based, fail-

safe mechanism to allow Custom Module access to only those GPIO pins which the module

designer intends of using but disables access to all others. Such a mechanism is implemented in the

LutDesign example project. LutPkg.vhd (in <OpenCamDir>/src/LutDesign) contains a constant

cCUSTOM_GPIO_ENABLE which permanently enables or disables access to selected GPIO

outputs. However, implementing such a mechanism is entirely at the discretion of the designer.

 6.6 MemoryBus Interface

The MemoryBus Interface consists of three separate interfaces which are functionally inter-

connected but perform their assigned tasks independently of each other. It interfaces to the Memory

Control Block (MCB) in the FPGA Framework which in turn interacts with the DDR3-RAM

device. The MCB is a Xilinx IP block which handles the intricate timing and sequencing

requirements of the DDR3-RAM interface.

 6.6.1 MemoryBus Command Port

The MemoryBus Command Port is used to launch read or write requests to the MCB. A Write

Command can be issued on the Command Port after write data has been transferred on the

MemoryBus Write Port. For read operations a Read Command is issued followed by the transfer of

the read data from the MCB on the MemoryBus Read Port.

The MemoryBus Command Port consists of the following signals:

Copyright © 2018 CorSight2 OpenCamera 30 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

• px_cmd_en_o: The MemoryBus Command Valid output signal is used to indicate to the

MCB that a new command is valid and available on the px_cmd_instr_o(2..0),

px_cmd_bl_o(5..0) and px_cmd_addr_o(29..0) ports. A command is deemed to have been

transferred to the MCB when px_cmd_en_o = ‘1’ and px_cmd_full_i = ‘0’.

• px_cmd_full_i: When the MemoryBus Command Buffer Full input is asserted (i.e. ‘1’) the

MCB is not read to accept a new command. If the Custom Module has a command pending

at that time (px_cmd_en_o = ‘1’) it must hold this command until the MCB de-asserts

px_cmd_full_i.

• px_cmd_instr_o(2..0): The MemoryBus Command Instruction output signal determines

which command is to be processed in the current cycle. There are two possible commands:

- Read Command: px_cmd_instr_o(2..0) = “001”

- Write Command: px_cmd_instr_o(2..0) = “000”

• px_cmd_bl_o(5..0): The MemoryBus Command Burst Length output signal indicates how

many (read or write) data transfers are involved in the current command cycle.

px_cmd_bl_o is a zero-based signal which must be programmed with a value of:

px_cmd_bl_o = Number-of-actual-data-transfers – 1

A maximum of 64 32-bit data transfers (i.e. px_cmd_bl_o(5..0) = 63) can be processed per

command.

• px_cmd_addr_o(29..0): The MemoryBus Command Address identifies the memory

location of the first DWord involved in the (read or write) data burst transfer.

px_cmd_addr_o is a byte address, however only 32-bit data transfers are allowed on the

Memory Read and Write ports. As a consequence the two least significant address bits

px_cmd_addr_o(1..0) must be “00” in all command cycles.

The Custom Module on CorSight2 is connected to a 128MByte DDR3-RAM. The

uppermost valid DDR3-RAM address is therefore 0x07FFFFFC. Care must be taken by the

Custom Module control logic when issuing burst commands accessing the upper RAM

address ranges. No automatic wrap around is performed in the MCB if a burst transfer

exceeds the upper address boundary.

Figure 8 shows a timing diagram of valid MemoryBus command cycles. At the rising clock edge of

SysClkxCI (1) the Custom Module issues a Write Command by asserting px_cmd_en_o = ‘1’ and

by setting px_cmd_instr_o(2..0) = “000”. At the same time px_cmd_bl_o(5..0) and

px_cmd_addr_o(29..0) are set to appropriate values.

The MCB indicates at clock edge (2) that it is not ready to accept new commands (px_cmd_full_i =

‘1’) which forces the Custom Module to hold the command for another clock cycle. At clock edge

(3) the write command transfer succeeds since px_cmd_en_o = ‘1’ and px_cmd_full_i = ‘0’. The

Custom Module is now free to remove the command from the MemoryBus Command Port or to

issue a new command. In Figure 8 the Write Command is followed by a Read Command at clock

edge (3). Since px_cmd_full_i is still ‘0’ at clock edge (4) the read command succeeds immediately

and px_cmd_en_o is de-asserted by the Custom Module as there are no further commands pending

at the time.

Copyright © 2018 CorSight2 OpenCamera 31 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 6.6.2 MemoryBus Read Port

• px_rd_en_o: The MemoryBus Read Data Valid output signal is used by the Custom Module

to indicate to the MCB that it is ready to receive data on the px_rd_data_i(31..0) port.

When the Custom Module samples px_rd_empty_i = ‘0’ and px_rd_en_o is set to ‘1’ the

read data transfer is deemed to have taken place and the Custom Module must capture the

read data at this point.

• px_rd_empty_i: When the MemoryBus Read Data Buffer Empty input signal from the

MCB is ‘0’ it indicates that valid read data is available on px_rd_data_i(31..0). If

px_rd_empty_i = ‘1’ the Read Data Buffer in the MCB is empty, i.e. no valid data is

available.

• px_rd_data_i(31..0): The MemoryBus Read Data Bus input is used to transfer read data

from the MCB to the Custom Module. Only 32-bit data transfers are supported.

Figure 9 shows two successive data read cycles being performed on the MemoryBus Read Port. At

the rising edge of SysClkxCI (1) the Custom Module asserts px_rd_en_o to ‘1’ to indicate that it is

ready to receive read data from the MCB. The data had previously been requested by a Read

Command on the MemoryBus Command Port. Note that the Read Command is not shown in Figure

9. Read data becomes available in the MCB at clock edge (2) when px_rd_empty_i is de-asserted

to ‘0’ and at the same time the data is presented on px_rd_data_i(31..0). The Custom Module must

capture the data whenever it samples px_rd_en_o = ‘1’ and px_rd_empty_i = ‘0’ which is the case

at clock edge (3) and (4).

Copyright © 2018 CorSight2 OpenCamera 32 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Figure 8: MemoryBus Command Cycle

 px_cmd_instr_o(2..0)

px_cmd_bl_o(5..0)

 SysClkxCI

 px_cmd_en_o

 Write CMD Read CMD

 Write BurstLen Read BLen

 px_cmd_full_i

1 2 3 4

px_cmd_addr_o(29..0) Write Address Read Addr

 6.6.3 MemoryBus Write Port

• px_wr_en_o: The MemoryBus Write Data Valid output signal is used by the Custom

Module to indicate to the MCB that it has placed valid write data on the

px_wr_data_i(31..0) port. When the Custom Module samples px_wr_full_i = ‘0’ and

px_wr_en_o is set to ‘1’ the write data transfer is deemed to have taken place and the

Custom Module is now free to replace the write data with a new data word. Please note that

all relevant write data within a write burst cycle must be transferred to the MCB before the

Custom Module is allowed to issue the corresponding Write Command on the MemoryBus

Command Port.

• px_wr_full_i: When the MemoryBus Write Data Buffer Full input signal from the MCB is

‘0’ it indicates that it is ready to accept write data on px_wr_data_o(31..0) port. If

px_wr_full_i = ‘1’ the Write Data Buffer in the MCB is full and the Custom Module must

hold valid write data (if any) for at least one more clock cycle.

• px_wr_data_o(31..0): The MemoryBus Write Data Bus output is used to transfer write data

from the Custom Module to the MCB. Only 32-bit data transfers are supported.

Figure 10 shows two successive data write cycles being performed on the MemoryBus Write Port.

At the rising edge of SysClkxCI (1) the Custom Module asserts px_wr_en_o to ‘1’ and at the same

time presents 32-bit of write data on px_wr_data_i(31..0). At clock edge (2) the Custom Module

samples px_wr_full_i = ‘1’ which means that the Write Data Buffer in the MCB is currently full

and no write data transfers can be made at this time. The Custom Module must therefore hold

px_wr_en_o = ‘1’ and keep the write data on px_wr_data_i(31..0) valid. At clock edge (2) the

MCB de-asserts px_wr_full_i to ‘0’ which indicates that the MCB is now ready to capture the write

data on the next rising clock edge (3). At clock edge (3) the Custom Module indicates that it wants

to perform a second write data transfer by keeping the px_wr_en_o signal high and presenting new

write data on px_wr_data_i(31..0). Since px_wr_full_i is still ‘0’ at clock edge (4) the second

write data transfer is taking place. Once all write data transfers have for a given write burst cycle

have been completed the Custom Module must issue a corresponding Write Command on the

Copyright © 2018 CorSight2 OpenCamera 33 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Figure 9: MemoryBus Read Cycle

 px_rd_data_i(31..0)

 SysClkxCI

 px_rd_en_o

Read_Data_0

 px_rd_empty_i

1 2 3 4

Read_Data_1

 MemoryBus Command Port. Note that the Write Command is not shown in Figure 10.

Copyright © 2018 CorSight2 OpenCamera 34 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Figure 10: MemoryBus Write Cycle

 px_wr_data_o(31..0)

 SysClkxCI

 px_wr_en_o

Write_Data_0

 px_wr_full_i

1 2 3 4

Write_Data_1

 7 Custom Module Example Designs

The CorSight2 OpenCamera Development Kit includes eight example designs which can be

synthesized/implemented with Vivado 2017.3 as well as simulated using the Vivado Xsim

simulator.

 7.1 OpenCamera Default Design

The OpenCamera Default design contains an empty Custom Module used to compile a bare-bone

Framework FPGA without any custom logic. There is no simulation testbench setup for the default

design.

 7.2 OpenCamera UserDesign

A new user application design for the Custom Module can be made with the aid of the User Design

files, located in <OpenCamDir>/src/UserDesign. These files are provided to enable the user to

quickly come up with an embedded custom design by copying and modifying the source files as

required.

There are five VHDL files in this directory, which make up the bare bone User Design:

• UserModule.vhd: The top level module file, instantiates the UserDesign and UserSysBusIf

components and includes the ImageBus output port FIFO/Buffer stage. A ChipScopePro

Logic Analyzer can optionally be instantiated in this file to be used as a debug aid for the

user application.

• UserCtrl.vhd: The entity and architecture body of the actual user application is a place

holder for the user design logic. Instantiate the top-level user application design in this file.

• UserSysBusIf.vhd: SystemBus interface for the UserDesign. Implements the control/status

register address allocation and register bit mapping. The control/status registers for the user

application (defined in UserPkg.vhd) can be added in the SysBusProc process.

• UserPkg.vhd: Contains default constant and type definitions for the Custom Module. The

user should modify this file to suit the requirements of the new user application design.

• UserVerPkg.vhd: Contains the version number of the user design. Do not manually alter

this file as it is automatically generated during the FPGA compile process as per the

command line options and the initialization parameters provided by the user..

 7.3 OpenCamera LutDesign

To demonstrate a completed Custom Module design a Colour/Monochrome LUT example design is

provided in <OpenCamDir>/src/LutDesign. This reference design can be synthesised with Xilinx

Vivado and simulated with Xsim.

A SystemBus register map/description for the LUT design can be found in <OpenCamDir>/doc/

RegisterDescr_LutDesign.txt and a sample control register setup procedure can be found in

<OpenCamDir>/sim/Simulation/Custom_LutDesign/SimCmd_Lut.ini.

• LutModule.vhd: The top level LUT design file is equivalent to the UserModule.vhd file in

the UserDesign directory. It instantiates the SystemBus interface (LutSysBusIf.vhd), the

Copyright © 2018 CorSight2 OpenCamera 35 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

actual LUT control entity (LutCtrl.vhd) and optionally a ChipScopePro Logic Analyzer.

• LutCtrl.vhd: Contains the LUT Controller, including the LUT BlockRAM memory

instantiations. This file is the equivalent to the UserCtrl.vhd file in the UserDesign

subdirectory.

• LutSysBusIf.vhd: Implements the SystemBus interface for the LUT design. It allocates

system addresses to control and status registers defined in LutPkg.vhd. It also provides an

interface to the SystemBus Memory Port, i.e. the LUT BlockRAM read/write port.

• LutRAM.vhd: Instantiates the actual LUT BlockRAM devices.

• LutPkg.vhd: Type and constant definition package for the LUT design. It defines the

control and status registers for the LUT.

• LutVerPkg.vhd: Contains the version number of the LUT design. Do not manually alter

this file as it is automatically generated during the FPGA compile process as per the

command line options and the initialization parameters provided by the user.

 7.4 OpenCamera MemTest Design

The MemTest design is located in <OpenCamDir>/src/MemTest which runs read and write

operations to the DDR3-RAM and verifies the integrity of the DDR3-RAM interface. Can also be

used as a test design to gauge maximum achievable read/write data bandwidth to the DDR3-RAM.

MemTest does not involve ImageBus transfers, i.e. the ImageBus Transmit Port is directly

connected to the ImageBus Receive Port.

A SystemBus register map/description for the Memory Test design can be found in

<OpenCamDir>/doc/RegisterDescr_MemTest.txt and a sample control register setup procedure

can be found in <OpenCamDir>/sim/Simulation/Custom_MemTest/SimCmd_MemTest.ini.

• MemTestModule.vhd: The top level MemTest design file is equivalent to the

UserModule.vhd file in the UserDesign directory. It instantiates the SystemBus interface

(MemTestSysBusIf.vhd), the actual MemTest control entity (MemTestCtrl.vhd) and

optionally a ChipScopePro Logic Analyzer.

• MemTestCtrl.vhd: Contains the MemTest Controller. This file is the equivalent to the

UserCtrl.vhd file in the UserDesign subdirectory.

• MemTestSysBusIf.vhd: Implements the SystemBus interface for the MemTest design. It

allocates system addresses to control and status registers defined in MemTestPkg.vhd.

• MemTestPkg.vhd: Type and constant definition package for the MemTest design. It defines

the control and status registers for MemTest.

• MemTestVerPkg.vhd: Contains the version number of the MemTest design. Do not

manually alter this file as it is automatically generated during the FPGA compile process as

per the command line options and the initialization parameters provided by the user..

 7.5 OpenCamera DiffPic Design

Located in <OpenCamDir>/src/DiffPic, the DiffPic example design calculates the pixel difference

between successive monochrome images. When running image transfers a frame is written to the

DDR3-RAM and retrieved at the start of the next frame. The pixel data of the incoming frame is

compared with the pixel data of the stored frame and the difference value is transmitted via the

ImageBus Transmit Port. The first frame of a frame sequence (i.e. when image transfers have first

Copyright © 2018 CorSight2 OpenCamera 36 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

been enabled) produced on the ImageBus Transmit port is the same as the input frame.

A SystemBus register map/description for the DiffPic design can be found in <OpenCamDir>/doc/

RegisterDescr_DiffPic.txt and a sample control register setup procedure can be found in

<OpenCamDir>/sim/Simulation/Custom_DiffPic/SimCmd_DiffPic.ini.

 7.6 OpenCamera Canny Filter Design

The Canny Filter design is located in <OpenCamDir>/src/CannyFilter. This is a Verilog design

which can be synthesized with Vivado and simulated with Xsim. CustomModule_cs2.v is the top

level design file for the Canny Filter design.

A SystemBus register map/description for the Canny Filter design can be found in

<OpenCamDir>/doc/ RegisterDescr_Canny.txt and a sample control register setup procedure can

be found in <OpenCamDir>/sim/Simulation/Custom_Canny/SimCmd_Canny.ini.

 7.7 OpenCamera BlockDemo Design

The RGB block pattern overlay design is located in <OpenCamDir>/src/BlockDemo. This Verilog

design can be synthesized with Vivado. No simulation testbench is provided. blockDemo_cm.v is

the top level design file for this design.

A SystemBus register map/description for the Canny Filter design can be found in

<OpenCamDir>/doc/ RegisterDescr_BlockDemo.txt.

 7.8 OpenCamera ScaleD Design

The image scaler design is located in <OpenCamDir>/src/ScaleD. This design can be synthesized

with Vivado and simulated with Xsim. scale_d_cm.vhd is the top level design file for the scaler

design.

A SystemBus register map/description for the Image Scaler design can be found in

<OpenCamDir>/doc/ RegisterDescr_ScaleD.txt and a sample control register setup procedure

can be found in <OpenCamDir>/sim/Simulation/Custom_ScaleD/SimCmd_ScaleD.ini.

Copyright © 2018 CorSight2 OpenCamera 37 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 8 Custom Module Simulation

The OpenCamera simulation environment provides system-level simulation functions by

performing Module initialisation via the SystemBus followed by image transfers in and out of the

Module via the ImageBus. These functions are user-programmable by modifying configuration and

command script files.

 8.1 Simulation File Structure

The <OpenCamDir>/sim directory contains files for simulating the OpenCamera example designs

and provides a generic simulation test bench for all designs. It is subdivided into 2 categories:

• TestBench: Contains the test bench source files for simulation. The test bench configures

the UUT (Unit-Under-Test) via the SystemBus to setup internal control registers and

transfers test images to the UUT via the ImageBus. The ImageBus output stream can be

compared on a pixel-by-pixel basis if a known “good” image is available.

• Simulation: Contains files for the simulation runtime environment. There are 6 designs

available for simulation:

• Custom_UserDesign

• Custom_LutDesign

• Custom_MemTest

• Custom_DiffPic

• Custom_Canny

• Custom_ScaleD

Each design has their own test bench configuration files TestBench_xxx.ini and

SimCmd_xxx.ini (with “xxx” being a reference to the design name). Simulations can be run

with the Vivado Xsim simulator. The relevant simulation runtime files are stored in the Xsim

sub-directories.

Please Note: No simulation testbench is provided for the BlockDemo example design.

 8.1.1 Simulation TestBench Files

The test bench controls the overall simulation flow and provides stimulus functions to the Unit-

Under-Test. The <OpenCamDir>/sim/TestBench directory contains the simulation test bench

source files. At the start of simulation the test bench reads the configuration files

TestBench_xxx.ini and SimCmd_xxx.ini to determine the simulation setup and control flow.

External image files (in pgm ASCII format) can be read into the test bench and be used as stimulus

for the UUT. The following files make up the OpenCamera test bench:

 8.1.1.1 Test Bench Source Files

• CustomModuleTB.vhd: Top level test bench file. Instantiates the UUT and the SystemBus

and ImageBus Stimulus Modules as well as the back-end ImageBus Analyzer. The Analyzer

can automatically compare the image output from the UUT with known image files.

• ImgBusStimulus.vhd: Reads a sequence of pgm image files and streams the images via the

ImageBus to the UUT.

Copyright © 2018 CorSight2 OpenCamera 38 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

• SysBusStimulus.vhd: Reads the SimCmd_xxx.ini file to initialize the UUT control

registers and to coordinate the overall simulation flow.

• SimParaInit.vhd: Reads the TestBench_xxx.ini file and sets internal test bench registers.

• ImgBusAnalyzer.vhd: Reads a sequence of image comparison files if comparison mode is

enabled (selectable via the TestBench_xxx.ini file). It also checks the consistency (i.e. line

and frame length and status sequence) of the UUT image output.

 8.1.1.2 Test Bench Configuration Files

The Custom Test Bench is highly parameterised to allow for a large variety of simulation scenarios.

• CustomFctLib.vhd: Contains a collection of VHDL functions used in various test bench

modules.

• CustomSimLib.vhd: Defines internal data structures and type/constant definitions used

throughout the test bench.

• CustomCfgLib.vhd: Contains test bench configuration constants, such as the test bench log

file name. It also specifies log settings to determine the extend of test bench progress and

error messages being printed to the screen and to a log file. CustomCfgLib.vhd references

the CfgModule package CustomCfg_xxx.vhd (with “xxx” being a reference to the design

name) which determines which design is being simulated.

• CustomCfg_xxx.vhd determine the TestBench configuration for each OpenCamera

example design. It defines the name of the TestBench_xxx.ini file read by the TestBench at

the start of simulation. A simulation compile script (i.e. project file) must only include one

of these files. If a new user design is added to the test bench, copy, rename and modify a

CustomCfg_xxx.vhd file and reference the new file in the simulation project file.

 8.2 Simulation Run-time Files

The <OpenCamDir>/sim/Simulation directory contains the following files and subdirectories:

• Images: Contains sample stimulus and comparison image files for simulation which are

read by the ImageBus Stimulus and Analyzer Modules. The user can add their own image

files to this directory and specify the file names in TestBench_xxx.ini.

• Custom_xxx directories: Contain the simulation files for each OpenCamera example

design. “xxx” is a reference to the design name.

The <OpenCamDir>/sim/Simulation/Custom_xxx directories contain a Xsim subdirectory which

contain simulation files required to setup and run a simulation using one of the two supported

simulation engines. It is recommended to copy the TestBench_xxx.ini and SimCmd_xxx.ini files

as well as the relevant XSim files into a separate directory and to create a simulation project at that

location.

• SimCmd_xxx.ini: The Simulation Command file is read by the SystemBus Stimulus

Module to initialize control registers in the UUT and to interactively control the simulation

flow. The SystemBus Stimulus Module initiates frame transfers by communicating with the

ImageBus Stimulus Module based on commands found in SimCmd_xxx.ini. It can also

adjust the simulation flow by querying dedicated signals in the UUT or delay execution of

simulation commands by inserting wait states.

Copyright © 2018 CorSight2 OpenCamera 39 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

• TestBench_xxx.ini: Contains test bench setup information which is read by the SimParaInit

Module at the start of simulation. Parameters such pixel transfer rates, image size, image

output and comparison information are contained in this file.

 8.2.1.1 Xsim Files

Located in <OpenCamDir>/sim/Simulation/Custom_xxx/Xsim (with “xxx” being a reference to

the design name), the following files are used to setup an Xsim simulation run. “xxx” denotes the

design name:

• Custom_xxx_Simulation.bat: Executed from a Command Window under MS Windows

this batch file calls the TCL file Custom_xxx_Simulation.tcl located in the same directory.

• Custom_xxx_Simulation.tcl: Invokes the Vivado Xsim simulator and runs a simulation of

the associated example design.

 8.3 Test Bench Initialisation File

Each custom design requires a test bench parameter configuration file which is named

TestBench_xxx.ini, where “xxx” stands for the name of the design being simulated.

The Test Bench is initialised at the beginning of the simulation to suit the requirements of the

application. The relevant parameters are read from the TestBench initialisation file and set by the

SimParaInit Module. To ensure the test bench finds and opens the correct file, the

<OpenCamDir>/sim/TestBench/CustomCfg_xxx.vhd file contains a link to this file.

TestBench_xxx.ini is subdivided into up to 5 sections which handle different aspects of the

simulation run. Each section contains a defined set of parameters. Not all sections or parameters

have to be listed in the initialisation file. If a section/parameter is not included the associated

parameter(s) are set to default values. Section and parameter names (i.e. keywords) are case-

insensitive. Sections are defined and limited by a section name which is entered in square brackets:

[SectionName]

The defined section names are:

• [Simulation]: Defines global simulation run parameters.

• [ImageMode]: Defines simulation parameters associated with the image transfers in and out

of the UUT.

• [ImageInput]: Defines a Region-of-Interest into the input images as well as a list of image

file names. All image files are located in the <OpenCamDir>/sim/Simulation/Images

directory.

• [ImageCompare]: If the test bench is used to validate the pixel output stream from the UUT

reference images must be provided and stored in <OpenCamDir>/sim/Simulation/Images.

For each UUT input image a corresponding comparison image must be made available.

• [ImageOutput]: To (optionally) capture the image output of the UUT to a file, the name(s)

and format of the image file are defined in this parameter section.

Within each section, parameters are entered in a standard initialisation file notation format with the

following syntax:

<ParameterKeyword>=<Value>

The sections and associated parameters are described in the following paragraphs. Please refer to an

Copyright © 2018 CorSight2 OpenCamera 40 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

existing TestBench_xxx.ini file to illustrate the exact syntax and usage for each parameter.

 8.3.1.1 Simulation Section Parameters

• CommandFile: Provides an alternative way of defining the name of a Simulation

Command File. The <OpenCamDir>/sim/TestBench/CustomCfgLib.vhd file provides a

(static) method of defining a reference to the SimCmd_xxx.ini file. This definition can be

overridden by including the CommandFile parameter in the TestBench Parameter

Initialisation file. The advantage of using a dynamically defined command file is that the

test bench does not have to be recompiled if a new file is to be used for the next simulation

run.

• ResetPeriod: At simulation start-up the Reset input to the UUT and test bench is

automatically asserted. The default ResetPeriod value, which applies when this parameter is

not specified is: 25 us. The duration of the reset period can be set by the ResetPeriod

parameter. It is specified as:

ResetPeriod=<Value><Time Unit>

<Value>: is a decimal or hexadecimal (Prefix: 0x) integer number which defines the

length of the Reset period.

<Time Unit>: Allowed time units are: “ns”, “us”, “ms” and “sec”.

• MaxSimTime: The maximum simulation run time can be set with the MaxSimTime

parameter. Once the simulation reaches the specified simulation time it is automatically

aborted. The default MaxSimTime value, which applies when this parameter is not specified

is: 0 ms. In this case the simulation run time must be set in the simulator itself, or

alternatively the simulation runs for an indefinite period of time.MaxSimTime is specified

as:

MaxSimTime=<Value><Time Unit>

<Value>: is a decimal or hexadecimal (Prefix: 0x) integer number which defines the

maximal length of the simulation period.

<Time Unit>: Allowed time units are: “ns”, “us”, “ms” and “sec”.

 8.3.1.2 ImageMode Section Parameters

• SingleFrm: Enables single frame transfer mode in the ImageBus Stimulus Module.

Permissible values: [0, 1]. When a StartImgBus command in the Simulation Script is

executed the SingleFrm parameter determines if a single frame (SingleFrm = 1) or a frame

sequence (SingleFrm = 0) is transferred to the UUT. If SingleFrm = 0 frames are being

transferred for the duration of the simulation run or until a StopImgBus command is

executed or until the last image in the SrcImgFile image file list has been transferred and

RepeatImgSeq = 0.

• RepeatImgSeq: If RepeatImgSeq = 0 the ImageBus Stimulus Module stops frame transfers

when the last frame of the SrcImgFile image file list has been transferred. If RepeatImgSeq

= 1 the frame sequence is restarted at the beginning of the image file list.

• PixInFreq: Defines the pixel frequency with which pixels are transferred from the

ImageBus Stimulus Module into the UUT. PixInFreq is specified as an integer in the range

[0..150].

Copyright © 2018 CorSight2 OpenCamera 41 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

• PixOutFreq: Defines the maximum pixel frequency with which the ImageBus Analyser

Module accepts image transfers from the UUT. PixOutFreq is specified as an integer in the

range [0..150]. Please note that PixOutFreq must be set to 150 if the UserDesign does not

handle the ImageBus flow control mechanism, i.e. if the constant

cIMG_HANDSHAKE_EN is set to “False”.

• PixWaitSeq: To insert periodic pixel transfer wait states by the ImageBus Analyzer Module

PixWaitSeq can be specified as a quotient of <NumWaitStates>/<NumPixels>, which

means that the ImageBus Analyzer inserts <NumWaitStates> every <NumPixels> pixel

transfers. PixWaitSeq provides an alternative to PixOutFreq to throttle the pixel transfer

rate of the UUT to better simulate wait state behaviour of the UUT.

• ScanLineMode: When the simulation runs in scanline mode (ScanLineMode = 1) each line

of an image transfer is considered a frame. The ImageBus Stimulus Module issues a “Start

Of Single-Line Frame” opcode at the beginning of each line, otherwise a “Start-of-

Frame”/”Start-of-Line”/”Start-of-Last-Line” sequence is generated.

• HorSync: Specifies the number of blank pixel transfers which are inserted by the ImageBus

Stimulus Module at the end of every line. During the horizontal blanking period the “Pixel-

Valid” output signal from Stimulus Module (ImgRxPixValxMO) is remains deasserted.

• VerSync: Specifies how many blank lines are inserted by the ImageBus Stimulus Module at

the end of every frame. During the vertical blanking period the “Pixel-Valid” output signal

from Stimulus Module (ImgRxPixValxMO) is remains deasserted.

 8.3.1.3 ImageInput Section Parameters

• StartPixel: Defines the left edge of a Region-of-Interest imposed on the image source file,

specified in SrcImgFile. The ImageBus Stimulus Module starts line transfers at the pixel

position specified by StartPixel. To start with the first pixel in a line, set StartPixel = 0.

• StartLine: Defines the top edge of a Region-of-Interest imposed on the image source file,

specified in SrcImgFile. The ImageBus Stimulus Module starts frame transfers at the line

specified by StartLine. To start with the first line in a frame, set StartLine = 0.

• NumPixel: Defines the number of pixels per line to be transferred within the Region-of-

Interest of the image source file. Please note that every image listed in SrcImgFile must have

a minimum line length of (StartPixel + NumPixel) pixels.

• NumLine: Defines the number of lines per frame to be transferred within the Region-of-

Interest of the image source file. Please note that every image listed in SrcImgFile must

have a minimum frame length of (StartLine + NumLine) lines.

• SrcImgFile: Defines a list of image source files used by the ImageBus Stimulus to generate

the pixel stimulus to the UUT. The file list is executed from top to bottom during the

simulation. If the transfer of the last image is completed, image transfers either stop at this

point (if RepeatImgSeq = 0) or restart from the top (if RepeatImgSeq = 1). Image source

files must be provided in pgm ASCII format. Each image source file name can be up to 256

characters long (including the path name). The file path is rooted in the current simulation

directory.

Copyright © 2018 CorSight2 OpenCamera 42 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 8.3.1.4 ImageCompare Section Parameters

• CmpImgPixel: Enables the comparison of the pixel output stream from the UUT with

known good images. Permissible values: [0, 1]. When CmpImgPixel = 1 the ImageBus

Analyser reads comparison image files listed in CmpImgFile and compares the ImageBus

output of the UUT with the pixel sequence found in the files. Discrepancies are reported as

errors on the console and in the test bench log file.

• CmpImgFormat: Enables Image Format Checking by the ImageBus Analyser. Permissible

values: [0, 1]. Image Format Checking uses the ImageBus status signals of the UUT to

verify that a correct pixel status sequence is generated. For example, the first pixel of a

frame must be either a SOF (Start-of-Frame) or SOSF (Start-of-Single-Line-Frame) opcode

followed by 0 or more NOP (No Opcode), followed by EOL (End-of-Line) etc. If an illegal

sequence is detected an error message is printed on the console and in the log file. Image

Format Checking also checks for the correct line length of an image transfer by counting the

number of pixels of the first line in the first frame of the simulation and comparing it to all

subsequent line transfers. Similarly, the frame length is determined by counting the number

of lines in the first frame and comparing it to all subsequent frame transfers. Any

mismatches between the actual and expected line/frame length are flagged as errors.

• CmpImgPixErr: Determines the maximum number of comparison error messages printed

to the console or to the test bench log file during the simulation run. Once <CmpImgPixErr>

errors have been detected no further messages are displayed.

• CmpImgAbort: Works in conjunction with CmpImgPixErr to abort the simulation when

the maximum number of pixel comparison errors have been detected.

• CmpImgFile: Defines a list of image comparison files used by the ImageBus Analyser.

CmpImgFile must contain a list of file names which correspond to the image source file list

defined in SrcImgFile . The comparison file list is executed from top to bottom. If the

transfer of the last image is completed the list is restarted from the top. Image source files

must be provided in pgm ASCII. Each comparison file name can be up to 256 characters

long (including the path name). The file path is rooted in the current simulation directory.

 8.3.1.5 ImageOutput Section Parameters

• OutImgEnable: The test bench can save the entire pixel transfer sequence from the UUT

ImageBus output to a file. If OutImgEnable is set to 1 files are generated to log the UUT

pixel stream.

• OutImgType: Defines the UUT pixel output file type and format. OutImgType is a string

parameter to select between binary or ASCII pgm/ppm files. Permissible values are:

Xsim: “ascii_pgm”, “ascii_ppm”.

• OutImgFile: Defines the UUT image output file name. OutImgFile is a string parameter of

up to 256 characters long (including the path name). Each output frame generated by the test

bench is stored in a different file, the name of which is specified as:

<OutImFile>_<Format>_<Num>.<Type>

<Format>: either “bin” or “ascii”, as specified in OutImgType.

<Num>: Sequential image number.

<Type>: either “pgm” or “ppm”, as specified in OutImgType.

Copyright © 2018 CorSight2 OpenCamera 43 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 8.4 Simulation Command Script File

The Simulation Command Script file (SimCmd_xxx.ini) contains initialisation and simulation flow

commands which are executed during the simulation run. After the test bench has completed the

power-up reset cycle, the simulation commands are executed in sequential fashion. The following

commands are available to customize the UUT simulation:

• SysRead: Performs a SystemBus read operation of a single register/memory location within

the UUT. When the read operation is completed the returned data value and address are

displayed on the console/log file. The command is specified as:

SysRead <Address>

<Address>: is a 32-bit address pointing to the required UUT location in either decimal

or hexadecimal (Prefix: 0x) format. Leading zeros may be omitted. The base address of

the Custom Module is fixed at address 0x300000.

• SysWrite: Performs a SystemBus write operation to a single register/memory location

within the UUT. Write operations can be monitored on the console or the log file if the

appropriate LogRegInit / LogMemInit log flags are set. The command is specified as:

SysWrite <Address> <WrData>

<Address>: is a 32-bit address pointing to the required UUT location in either decimal

or hexadecimal (Prefix: 0x) format. Leading zeros may be omitted. The base address of

the Custom Module is fixed at address 0x300000.

<WrData>: is a 32-bit data word containing the required write data. Defined in either

decimal or hexadecimal (Prefix: 0x) format. Leading zeros may be omitted.

• SysVerify: Performs a data verify operation on a single register/memory location within the

UUT. SysVerify can be used to check if the register or memory location contains an

expected data bit pattern. It performs a read operation from the UUT and compares the

returned data word with an expected data word. The comparison is performed on a bit-by-bit

basis using a mask to exclude data bits which are of no interest in the operation. The

command is specified as:

SysVerify <Address> <ExpData> <Mask>

<Address>: is a 32-bit address pointing to the required UUT location in either decimal

or hexadecimal (Prefix: 0x) format. Leading zeros may be omitted. The base address of

the Custom Module is fixed at address 0x300000.

<ExpData>: is a 32-bit data word containing the expected comparison data. Defined in

either decimal or hexadecimal (Prefix: 0x) format. Leading zeros may be omitted.

<Mask>: is a 32-bit data word containing the verify data mask. Mask bits which are set

to '1' enable the corresponding data bit for comparison. Defined in either decimal or

hexadecimal (Prefix: 0x) format. Leading zeros may be omitted.

• Wait: The Wait command instructs the test bench to suspend Simulation Script command

processing for a defined period of time. The command is specified as:

Wait <Value><Time Unit>

<Value>: is a decimal or hexadecimal (Prefix: 0x) integer number which defines the

length of the Wait period.

<Time Unit>: defines the time unit of the Wait command. Permissible values: “ns”,

Copyright © 2018 CorSight2 OpenCamera 44 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

“us”, “ms” and “sec”.

• ImgBusReset: Performs an ImageBus reset. When executing ImgBusReset the ImgRstxRI

inputs to the UUT, ImageBus Stimulus and Analyser Modules are asserted for 2 clock

cycles. Active frame transfers are immediately aborted and the entire ImageBus structure

returns to idle mode.

Please Note: The ImgRstxRI input of the UUT must not be used to reset UUT-internal

SystemBus control or configuration registers. SystemBus registers can only be reset during

the power-up reset phase.

• StartImgBus: Instructs the ImageBus Stimulus Module to start a new frame transfer using

the next available image defined in SrcImgFile. If the SingleFrm SingleFrm parameter is

set only a single frame is transferred, otherwise frame transfers continue until one of the

following conditions are met:

1) The StopImgBus command is executed.

2) The AbortImgBus command is executed.

3) The end of the SrcImgFile list is reached and RepeatImgSeq is reset (0).

4) The end of the simulation run is reached.

• StopImgBus: Instructs the ImageBus Stimulus Module to stop frame transfers at the end of

the currently active frame. StopImgBus does not need to be executed if the SingleFrm

parameter is set.

• AbortImgBus: Aborts the currently active ImageBus frame transfer by sending an Abort

signal to the ImageBus Stimulus Module. When detecting an active Abort signal, the

Stimulus Module immediately stops transferring pixels to the UUT and returns to the Idle

state, awaiting new commands. AbortImgBus can be useful to simulate the recovery

behaviour of the UUT if an unexpected image transfer condition arises.

• EventSignal: This command is used to synchronise the execution of the Simulation Script

file with the internal processing status of the UserDesign. During simulation the test bench

executes the Simulation Script commands and at the same time monitors the EventPort

signals, which monitor the progress of the simulation. When the “EventSignal” command is

encountered the test bench checks the status of the specified EventPort signal and stops

script execution until the required signal status is detected.

The EventSignal command is specified as:

EventSignal(<Index>) <Event>

<Index> defines which EventPort signal is being queried. Must be an integer value

within the range of [0..31].

<Event> defines the status of the EventPort signal which must be detected by the test

bench before the Simulation Script Command processing resumes. <Event> is a string

variable which can take on the following values:

- Rising: Wait until the next rising edge of EventPort(Index).

- Falling: Wait until the next falling edge of EventPort(Index).

- High: Wait until EventPort(Index) is high.

- Low: Wait until EventPort(Index) is low.

Copyright © 2018 CorSight2 OpenCamera 45 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

• EventBus: works similar to the EventSignal command. It is used to synchronise the

execution of the Simulation Script File with the internal processing status of the UserDesign.

The EventBus command allows a consecutive range of EventPort signals to be compared

with a defined value. When the comparison condition is met execution of Simulation Script

commands resumes.

The EventBus command is specified as:

EventBus(<HighIndex>..<LowIndex>) <Operation> <Value>

<HighIndex> defines the upper EventPort(31..0) signal included in the EventBus

command. Must be an integer value [0..31], with HighIndex > LowIndex.

<LowIndex> defines the lower EventPort(31..0) signal included in the EventBus

command. Must be an integer value with a range of [0..31], with HighIndex >

LowIndex.

<Operation> defines the comparison operation which is performed by the EventBus

command. <Operation> is a string variable which can take on the following values:

- EQ: Wait until EventPort(HighIndex .. LowIndex) is equal to <Value>.

- NE: Wait until EventPort(HighIndex .. LowIndex) is not equal to <Value>.

<Value> defines the comparison value used in the EventBus command.. It can be a

decimal or hexadecimal (prefix 0x) number.

Copyright © 2018 CorSight2 OpenCamera 46 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 8.5 Test Bench Log Messages

When running a simulation, the test bench can generate a large amount of log messages to indicate

simulation progress or errors. To limit the amount of messages it is possible to configure the log

mechanism to suit individual requirements.

The test bench configuration file <OpenCamDir>/sim/TestBench/CustomCfgLib.vhd contains

the enumeration constant cLOG_ITEM_ARRAY which can be modified by the user. The type

definition tLOG_ITEM_LIST lists all available log message categories. By including (or

excluding) log items the amount of messages can be reduced or expanded. The following log

message flags are available:

• LogError: Generates messages related to simulation setup errors, such incompatible image

file types etc.

• LogExec: Generates messages when main test bench modules start execution. Useful for

tracking test bench errors resulting in simulation crashes.

• LogReturn: Generates messages when main test bench modules finish execution. Useful for

tracking test bench errors resulting in simulation crashes.

• LogImgHeader: Displays image file header information when read by the test bench.

• LogSimInit: Displays parameters contained in the test bench parameter configuration file

TestBench_xxx.ini as they are read by the test bench.

• LogRegInit: Displays messages when performing SystemBus write operations to the UUT

register space.

• LogMemInit: Displays messages when performing SystemBus write operations to the UUT

memory space.

• LogWait: Displays status messages when the test bench performs Wait commands listed in

the Simulation Command Script file.

• LogFlowCtl: Displays messages when certain events occur during the simulation run, such

as reading image files, starting or stopping frame transfers etc.

• LogEvtWait: Displays messages when the test bench enters or exits wait states associated

with the EventSignal/EventBus commands.

• LogAnalyzer: Displays image comparison progress messages associated with the ImageBus

Analyser.

Copyright © 2018 CorSight2 OpenCamera 47 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 8.6 Xsim Simulator

To simulate the OpenCamera example designs with Xsim, TCL scripts as well as MS-Windows

batch files are provided for each example design. These scripts/batch files generate a new Vivado

project, compile the requested example design and automatically run the simulation.

 8.6.1 Xsim TCL Simulation

To run an OpenCamera Xsim simulation within a Vivado TCL shell window, open a Vivado TCL

shell session and cd to:

 <OpenCamDir>/sim/Simulation/Custom_xxx/Xsim

On the TCL command line issue the following command to run the simulation:

source Custom_xxx_Simulation.tcl

 8.6.2 Xsim Windows Simulation

To run an OpenCamera Xsim simulation on MS-Windows open a Command Window and cd to:

 <OpenCamDir>\sim\Simulation\Custom_xxx\Xsim

Execute the Custom_xxx_Simulation.bat batch file to run the simulation.

Copyright © 2018 CorSight2 OpenCamera 48 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 9 OpenCamera FPGA Compilation

The entire CorSight2 FPGA, including the Framework and Custom Module design is compiled

when running the OpenCamera FPGA compilation scripts. Two compile options are provided with

the OpenCamera Development Kit:

• TCL Compile Script

• Windows Batch Script

 9.1 OpenCamera TCL Compile Script

The OpenCamera FPGA compilation scripts are fully TCL based, which can be executed using the

Vivado TCL shell environment. The TCL compile option runs independent of the underlying

operating system. This option must be selected when using a Linux OS. To run an FPGA

compilation follow the steps described below:

1. Update the <OpenCamDir>/syn/InitFiles/CS2_xxx_Init.tcl file (“xxx” being a reference

to the design name) with the required Custom Module synthesis and implementation

parameters (see Chapter 3.4).

2. Open the Vivado 2017.3 TCL Shell and cd to <OpenCamDir>/CompileTools.

3. Run the following command to invoke Vivado. All required command arguments must be

provided in the order indicated below.

exec vivado -source Start_OpenCam_FPGA.tcl -tclargs \

<CustomID> <DesignID> <RevisionID> <CompMode>

<CustomID> (required) = [Default, UserDesign, LutDesign, MemTest,

 DiffPic, Canny, BlockDemo, ScaleD]

<DesignID> (required) = [DSG00, DSG01, DSG02]

<RevisionID> (required) = [REV01, REV02, REV03]

<CompMode> (optional) = [Release, Debug] - Default Value: Release

The <CustomID> argument selects which Custom Module is to be compiled and

<DesignID> selects the FPGA Framework Design within which the Custom Module is

embedded (see Chapter 3.1 and Chapter 4.1, respectively).

<RevisionID> selects which CorSight2 board revision the compilation is targeting. If the

board revision of the actual CorSight2 target board does not match <RevisionID> the

resulting FPGA firmware file can not be loaded into the CorSight2 Flash device (see Item 6

below).

The compile mode argument <CompMode> is optional and determines if the FPGA

compilation is performed in “Release” or “Debug” mode. The default mode is “Release”.

The “Debug” option is ignored for the “Default”, “DiffPic”, “Canny”, “BlockDemo” and

“ScaleD” modules since there is no debug logic present in these designs.

When Debug Mode is enabled (UserDesign, LutDesign and MemTest only) any debug

logic (i.e. ChipScopePro or Vivado Logic Analyzer or other discrete debug logic) which the

Copyright © 2018 CorSight2 OpenCamera 49 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

designer may have included in the Custom Module is instantiated in the FPGA compilation

process.

Debug logic is enabled or disabled in the HDL source files via the cCUSTOM_DEBUG_

ENABLE constant defined in the Version package file XXX_VerPkg.vhd. The Version

package file is automatically generated by the OpenCamera FPGA compile scripts which

uses the <CompMode> parameter to set the constant value.

4. The Vivado GUI opens and compiles the specified OpenCamera design.

5. If the compilation is successful a binary firmware file is created in the OpenCamera Release

directory. The location of the release directory is specified by the Cs2OpenCamCfg

(ReleaseDir) environment variable which is defined in the file <OpenCamDir>/Compile

Tools/Set_Customer_EnvVar.tcl.

Each distinct OpenCamera FPGA compilation will be allocated a dedicated subdirectory

within the release directory. There are two levels of subdirectories:

- The CorSight2 Board Revision and Firmware version numbers are included in the

upper subdirectory level, for example: CS2_REV02_OPC_VER01-03.

- This directory in turn accommodates other subdirectories which include the

<CustomID>, <DesignID> and <CompMode> arguments, for example:

CANNY_DSG02_REL. The compiled firmware file is contained in this

subdirectory.

6. The firmware file is named by the OpenCamera script with the correct naming syntax, e.g.:

F114Rx_A7-75-2_CFG00_DSG00_USERDESIGN_OPC_REL_VER01-03-yy.bin

The “F114Rx” component in the file name denotes the CorSight2 board type and revision

number.

”A7-75-2_CFG00” identifies the FPGA type, size and speed grade as well as the FPGA

configuration option, which is hard-wired on the CorSight2 PCB. For currently available

CorSight2 cameras this a static component of the firmware file name.

“DSG00” and “USERDESIGN” define the selected FPGA Framework and Custom

Module option used to compile the FPGA.

The “OPC” component denotes that the firmware has been compiled as an OpenCamera

project.

“REL” denotes that the firmware contains a “Release” Custom Module version and is

alternatively be replaced by “DBG” if the firmware has been compiled in “Debug” mode.

“VER01-03” defines the Major and Minor FPGA release version number and “-yy”

denotes the Custom Module revision number which has been defined in the CS2_xxx_

Init.tcl file (see Item 1 above).

7. Check the OpenCamera compilation log file Cs2CompileLog.txt located in the compilation

directory (see Cs2OpenCamCfg(CompileDir) in Chapter 2.2.1). If timing errors or setup

errors have been reported correct the errors and re-run the FPGA compilation, see Item 8

Copyright © 2018 CorSight2 OpenCamera 50 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

below.

Please Note: The compile directory uses the same structure and naming convention as the

release directory, as described in Item 5.

8. If a design exhibits timing errors open the Vivado project file CS2_Revx.xpr located in the

compile directory and analyse the offending signal paths. This is best accomplished by

opening the “Implemented Timing Report” within Vivado and examine the “Timing”

tab/window. If signals exhibit high fan-outs or show a large number of logic levels modify

the source code to streamline the offending construct.

As an alternative, it may be possible to eliminate timing errors which are due to a high

FPGA device utilisation and/or due to routing congestion by recompiling the FPGA with a

different <DesignID>. As shown in Chapter 4.1, Table 5 the Framework logic for DSG00

requires the highest device utilisation. Try compiling the new Custom Module with either

DSG01 or DSG02 to see if timing errors persist. Otherwise change the selected synthesis or

implementation strategies in Vivado.

Please Note: All FPGA Framework / Custom Module design combinations supplied by

NET GmbH compile without timing errors.

 9.2 OpenCamera Windows Batch Script

As an alternative to using the Vivado TCL Shell script directly, MS-Windows users can run the

FPGA compilation from a Windows Command Window. The procedure to follow is the same as

running the compilation from the TCL script as described in Chapter 9.1, except Item 2 and 3 are

replaced as follows:

2. Open an MS-Windows Command Window and cd to <OpenCamDir>\CompileTools.

3. Run the following command to invoke Vivado. All required command arguments must be

provided in the order indicated below.

Run_CS2_OpenCam.bat <CustomID> <DesignID> <RevisionID><CompMode>

with:

<CustomID> (required) = [Default, UserDesign, LutDesign, MemTest,

 DiffPic, Canny, BlockDemo, ScaleD]

<DesignID> (required) = [DSG00, DSG01, DSG02]

<RevisionID> (required) = [REV01, REV02, REV03]

<CompMode> (optional) = [Release, Debug] - Default Value: Release

The Windows batch file simply invokes the TCL compile script Start_OpenCam_FPGA.tcl,

described in Chapter 9.1.

Copyright © 2018 CorSight2 OpenCamera 51 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 9.3 CorSight2 FPGA Flash Programming

After a successful OpenCamera FPGA compilation the resulting firmware file can be programmed

into the CorSight2 Flash device using the command:

cbcmaload.x64.exe 4 <Firmware_File_Name.bin>

The cbcmaload.x64.exe tool is part of the SynView SDK which has to be installed on the

CorSight2 camera. This tool is located in the SynView ./bin directory which is included in the

system path. The update process may take a few minutes for programming the flash device. When

the update process is completed the FPGA still runs with the old configuration – you have to power

cycle the camera to load the new firmware into the CorSight2 FPGA.

The naming of <Firmware_File_Name.bin> determines if the file can be loaded into the Flash

memory of a given CorSight2 camera. If a mismatch is detected (i.e. wrong CorSight Board

Revision Number) the cbcmaload.x64.exe tool aborts the load process. If in doubt, run

cbcmaload.x64.exe without providing any arguments to display an “expected” firmware name

example.

IMPORTANT: Do not manually change the firmware file name if a mismatch is detected.

Instead, re-compile the correct FPGA version and repeat the Flash programming step.

IMPORTANT: The Flash Update procedure must not be interrupted in any way, otherwise

the CorSight2 camera may become inoperable after the next power cycle!

Copyright © 2018 CorSight2 OpenCamera 52 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Figure 11: FPGA Flash Programming

Figure 12: cbcmaload options

 10 Custom Module Design Implementation

When given the task of creating a new CorSight2 Custom Module design the customer has a choice

between two implementation options:

• Remain within the OpenCamera Development Kit environment and re-use/modify existing

compile and simulation scripts etc.

• Create a new design from scratch outside the ODK environment and use own project tools

to implement/simulate the design.

Both alternatives have advantages and disadvantages and the designer must choose which approach

best suit their needs. The following chapters explain both options and highlights their pros and cons.

 10.1 Modifying the existing UserDesign Example

When staying within the ODK environment the proposed method of creating a new Custom Module

design is to modify and re-use the UserDesign example design.

 10.1.1 UserDesign Source Files

The existing UserDesign VHDL source files provide a recommended Custom Module design

structure which has been described in Chapter 7.2. It is at the discretion of the module designer to

keep the proposed structure or to replace the existing files with new ones.

 10.1.1.1 Updating UserDesign Source Files

When using the existing UserDesign source files the designer can update the following files:

• UserCtrl.vhd: Instantiate the new top-level Custom Module entity and connect all

ports/signals to the upper UserDesign level, as required.

• UserPkg.vhd: Define the SystemBus control/status register structure in the

tUSR_CTRL_REG and tUSR_STAT_REG type declarations.

• UserSysBusIf.vhd: Implement the control/status register address allocation and register bit

mapping, as per the defined control/status register structure.

 10.1.1.2 Replacing UserDesign Source Files

When using a new set of source files the following restrictions have to be observed:

• The declaration for the top-level Custom Module entity (as defined in UserModule.vhd)

must remain unchanged.

• The SystemBus register at address location 0x00 must have a layout as described in Chapter

6.2.3

It is likely that new or additional files are required for a Custom Module design. The location of the

source files is not important as that can be changed in the associated UserDesign project file (see

Chapter 10.1.2). Therefore it is possible to keep the Custom Module source files at a location

outside the ODK.

Copyright © 2018 CorSight2 OpenCamera 53 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 10.1.2 UserDesign Project File

The UserDesign can be compiled within either one of the three available FPGA Framework designs

DSG00, DSG01 or DSG02 (see Chapter 4.1), depending on the required Framework functionality

and resource requirements. DSG00 is the standard and recommended design option.

When adding new HDL design files the designer has to update the UserDesign project file called

CS2_Revx_UserDesign_FpgaProject.tcl, which is located in:

 <OpenCamDir>/syn/ProjectFiles/CS2_Revx

“CS2_Revx” denotes the applicable CorSight2 board revision number, x = [1..3]. The required

UserDesign source files are listed in the project file. The paths and file names of the new design

files have to be included and unused example design files have be removed. All other entries in the

project file should remain unchanged.

Once the project file has been updated and new source files have been debugged the design can be

synthesized/implemented by following the compilation procedure described in Chapter 9.

 10.1.3 UserDesign Simulation

The new UserDesign can be simulated with the existing simulation Testbench by modifying the

relevant simulation project file and the Testbench and SystemBus initialization files, as described

below:

 10.1.3.1 Xsim Simulation

Xsim simulations use the project file Custom_UserDesign_Simulation.tcl, located in:

<OpenCamDir>/sim/Simulation/Custom_UserDesign/Xsim

The UserDesign files are declared at line 60+ which must be changed as per the requirements of the

new Custom Module design.

 10.1.3.2 Simulation Initialization

A new Custom Module may require a different module initialization procedure at the start of the

simulation run. The simulation scripts

<OpenCamDir>/sim/Simulation/Custom_UserDesign/TestBench_User.ini

<OpenCamDir>/sim/Simulation/Custom_UserDesign/SimCmd_User.ini

must be modified to change the Testbench setup and to initialize the SystemBus control registers of

the new Custom Module. For detailed descriptions of available simulation commands see Chapters

8.3 and 8.4.

Once all simulation scripts have been updated simulations can be executed as described in Chapter

8.6 (Xsim).

 10.1.4 UserDesign Limitations

An important consideration when using the UserDesign as the basis for a new Custom Module

design is that user-updated ODK files in an existing ODK revision can not easily be transferred

when upgrading to a new ODK revision.

Copyright © 2018 CorSight2 OpenCamera 54 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Updates which the module designer has made to existing ODK files, for example the Vivado project

files (described in Chapter 10.1.2) or simulation files (described in Chapter 10.1.3), have to be

merged with the corresponding files included in the new ODK revision.

Also, if the UserDesign sources directory files (<OpenCamDir>/src/UserDesign) have been

changed by the designer the changes also have to be merged with files in the new revision ODK.

At the same time, the advantage of the UserDesign approach is that the FPGA

synthesis/implementation scripts as well as the simulation scripts and Testbench which are part of

the ODK can be reused and do not need to be developed by the customer.

 10.2 Creating a new Custom Module Design

If the module designer decides to create a new Custom Module design from scratch and not rely on

the ODK environment a number of steps need to be performed to extract required FPGA

Framework compilation files from the ODK.

 10.2.1 Custom Module Design Guidelines

In the following description it is assumed that the new Custom Module design resides entirely

outside of the ODK environment. The location of the new top-level Custom Module directory is

referred to as: <CustomModDir>.

Perform the following steps (in no particular order):

• Create a new Custom Module top-level directory <CustomModDir>.

• Copy the entire OpenCamera IP directory <OpenCamDir>/IP to <CustomModDir>.

• Copy the FPGA timing and pinout constraint files located in <OpenCamDir>/syn/

ConstraintFiles to a suitable location within <CustomModDir>.

• Select an existing Vivado project file with the required Design-ID component DSG00,

DSG01 or DSG02 (in <OpenCamDir>/syn/ProjectFiles) and cut-and-paste the SecureIP,

FPGA Constraints and the Design-IP entries to a new Custom Module project file, as

required.

- Edit the path names of the copied project file entries to suit the new environment.

- Add entries for the new Custom Module design files to the project file.

- The commands to copy the Design-IP files to the compile directory can be omitted.

• Create a new Vivado project for an Artix7 XC7A75T-FGG484-2 FPGA and source the

newly created project file.

• Synthesize the design using the Flow_PerfOptimized_high strategy.

• Implement the design using the Performance_ExplorePostRoutePhysOpt strategy.

• If timing errors occur analyze the offending paths and fix any long delay paths. Repeat the

FPGA synthesis and implementation process. If necessary change the synthesis /

implementation strategies.

• Generate a bitstream / Flash programming file. The resulting bin file will be located in the

Vivado compile directory under <DesignName>.runs\impl_1. The bin file has to be

renamed to adhere to the CorSight2 firmware naming convention if the file is loaded into the

Copyright © 2018 CorSight2 OpenCamera 55 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

FPGA Flash device using the cbcmaload tool (see Chapter 9.3). All CorSight2 firmware file

names have to start with a string “F114Rx_A7-75-2_CFG00”.

 10.2.2 Custom Module Simulation

A new externally located Custom Module design is not supported in the CorSight2 ODK simulation

environment. The ODK Testbench is an integral part of the Development Kit and can not be

exported. Therefore, it is the responsibility of the module designer to create a suitable Custom

Module simulation testbench and to verify correct behaviour of the design. Once the new design has

been verified via simulation a FPGA implementation can be attempted.

Copyright © 2018 CorSight2 OpenCamera 56 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 11 CorSight2 ODK Release Upgrade

From time to time NET GmbH may release a new FPGA firmware revision for the CorSight2

camera. A new firmware release includes an updated OpenCamera Development Kit which the user

may want to incorporate into their existing user application design.

When merging user-updated files in the old CorSight2 ODK with corresponding files in the new

ODK the user must update all new ODK files in the same way as the old files have been updated

previously. This applies in particular to modified project files (located in <OpenCamDir>/syn/
ProjectFiles) which may contain references to new files present in the new ODK. To simplify this

process it is recommended to use an appropriate file comparison/merging tool to make the updates.

To ensure that all new ODK files have been updated, the user is encouraged to check the guidelines

described in Chapters 2.2, 3.4 as well as Chapter 10.

In addition, the customer environment files:

<OpenCamDir>/CompileTools/Set_Customer_EnvVar.tcl

<OpenCamDir>/CompileTools/Set_Vivado_Version.bat

must be updated as described in Chapters 2.2.1 and 2.2.2.

IMPORTANT: A new CorSight2 firmware release may require a new Xilinx Vivado installation.

The user should check the pre-requisite requirements of the new ODK listed in Chapter 2.1.

Copyright © 2018 CorSight2 OpenCamera 57 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 12 Custom Module SW Interface

The host CPU interacts with the Custom Module through the SystemBus Master in the FPGA

Framework. This communication is hidden in the PCIe driver of SynView and is not available to the

host application. Instead the host application can access all Custom Module registers through the

GenICam interface of the SynView API. The required SynView version for CorSight2 Custom

Module is SynView-1.03.004.

Because the GenICam interface is generic it does not need information about the actual Custom

Module design implementation. The only exception is the Custom Module ID register (@addr 0),

which has to be different from 0 and 0xFFFFFFFF to enable the GenICam interface.

 12.1 GenICam Interface

Being GenICam compliant, the CorSight2 camera contains an XML file with a detailed description

of the camera features. The standard CorSight2 XML file already contains a category for accessing

control registers of the Custom Module. As soon as the camera detects a valid Custom Module ID,

the corresponding XML category “Custom Control” will be visible (see Figure 13). The camera

XML file provides basic 32-bit Custom Module register access with address and data parameters.

Copyright © 2018 CorSight2 OpenCamera 58 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Figure 13: Custom Module GenICam Interface

 12.2 Address Space

The Custom Module internal address space is 128KByte, allowing implementation of max. 32K

word register (see Table 8). The GenICam interface addresses these registers indirectly so that the

SystemBus base address is hidden from the host application. In contrast to the SystemBus the

GenICam interface uses word addresses because byte addressing is not possible.

Word Address CPU Access Description Update

Module ID (mandatory)

0x0000 R Custom Module ID

Range 0x00000001...0xFFFFFFFE

boot

User Registers (optional)

0x0001...0x0010 RW Custom Module register space which can be accessed

by host application. It can optionally be stored in the

non-volatile camera UserSet1-4 and is then

automatically reloaded during reset.

Any time

0x0011...0x7FFF RW Custom Module register space which can be accessed

by host application.

Any time

User Memory (optional)

0x0000...0x7FFF RW Custom Module memory space which can be

accessed by host application.

Any time

Special Function Registers (for communication between CPU and Custom Module)

0x???? R or W tbd start

Table 8: Custom Module Register Space

The GenICam interface does not know how many registers are really implemented in the Custom

Module design. Therefore it is possible to address non-existing registers!

Copyright © 2018 CorSight2 OpenCamera 59 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 12.3 XML Features

A number of pure XML features belong to the GenICam interface which are not implemented in the

Custom Module design (see Table 9).

Type CPU Access Description Update

Custom Module Bypass

bool RW Completely bypasses the Custom Module. This

function is implemented in the FPGA Framework and

is not part of the Custom Module design!

Locked

Custom Module Register Address

15-bit int

0x0000...0x7FFF

RW Allows addressing of all Custom Module registers by

defining the word address. Register content is then

accessed via Custom Module Register Data.

Any time

Custom Module Register Data

32-bit int R Read data value from addressed register. Any time

32-bit int W Write data value into addressed register. Any time

Custom Module Memory Address

15-bit int

0x0000...0x7FFF

RW Allows addressing of all Custom Module memory by

defining the word address. Memory content is then

accessed via Custom Module Memory Buffer.

Any time

Custom Module Memory Size

15-bit int

0x0001...0x8000

RW Defines number of words accessed in Custom

Module memory. Memory content is then accessed

via Custom Module Memory Buffer.

Any time

Custom Module Memory Buffer

char[Size*4] RW Accesses all the Custom Module memory in a single

access without using individual addressing.

Any time

Table 9: Custom Module GenICam Features

Copyright © 2018 CorSight2 OpenCamera 60 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 12.4 How to use the SW Interface

The following source code snippets are copied out of SynView Explorer and show how to access

Custom Module registers through the SynView API.

Read Custom Module ID:

LvFeature Ftr_CustomModuleId;

int64_t Val_CustomModuleId;

LvGetFeatureByName(hDevice, LvFtrGroup_DeviceRemote, "CustomModuleId",
&Ftr_CustomModuleId);

LvGetInt(hDevice, Ftr_CustomModuleId, &Val_CustomModuleId);

Write Custom Module register 0x100:

LvFeature Ftr_CustomModuleRegAddr;

LvGetFeatureByName(hDevice, LvFtrGroup_DeviceRemote, "CustomModuleRegAddr",
&Ftr_CustomModuleRegAddr);

LvSetInt(hDevice, Ftr_CustomModuleRegAddr, 0x100);

LvFeature Ftr_CustomModuleRegData;

LvGetFeatureByName(hDevice, LvFtrGroup_DeviceRemote, "CustomModuleRegData",
&Ftr_CustomModuleRegData);

LvSetInt(hDevice, Ftr_CustomModuleRegData, 0x12345678);

Read LUT from Custom Module memory space:

LvFeature Ftr_CustomModuleMemAddr;

LvGetFeatureByName(hDevice, LvFtrGroup_DeviceRemote, "CustomModuleMemAddr",
&Ftr_CustomModuleMemAddr);

LvSetInt(hDevice, Ftr_CustomModuleMemAddr, 0x4000);

LvFeature Ftr_CustomModuleMemSize;

LvGetFeatureByName(hDevice, LvFtrGroup_DeviceRemote, "CustomModuleMemSize",
&Ftr_CustomModuleMemSize);

LvSetInt(hDevice, Ftr_CustomModuleMemSize, 256);

LvFeature Ftr_CustomModuleMemBuffer;

char Val_CustomModuleMemBuffer[1024];

LvGetFeatureByName(hDevice, LvFtrGroup_DeviceRemote, "CustomModuleMemBuffer",
&Ftr_CustomModuleMemBuffer);

LvGetBuffer(hDevice, Ftr_CustomModuleMemBuffer, Val_CustomModuleMemBuffer,
sizeof(Val_CustomModuleMemBuffer));

Copyright © 2018 CorSight2 OpenCamera 61 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

Write LUT to Custom Module memory space:

LvFeature Ftr_CustomModuleMemAddr;

LvGetFeatureByName(hDevice, LvFtrGroup_DeviceRemote, "CustomModuleMemAddr",
&Ftr_CustomModuleMemAddr);

LvSetInt(hDevice, Ftr_CustomModuleMemAddr, 0x4000);

LvFeature Ftr_CustomModuleMemSize;

LvGetFeatureByName(hDevice, LvFtrGroup_DeviceRemote, "CustomModuleMemSize",
&Ftr_CustomModuleMemSize);

LvSetInt(hDevice, Ftr_CustomModuleMemSize, 256);

LvFeature Ftr_CustomModuleMemBuffer;

char Val_CustomModuleMemBuffer[1024];

memset(Val_CustomModuleMemBuffer, 0, sizeof(Val_CustomModuleMemBuffer)); /*
replace this line by real buffer initialization */

LvGetFeatureByName(hDevice, LvFtrGroup_DeviceRemote, "CustomModuleMemBuffer",
&Ftr_CustomModuleMemBuffer);

LvSetBuffer(hDevice, Ftr_CustomModuleMemBuffer, Val_CustomModuleMemBuffer,
sizeof(Val_CustomModuleMemBuffer));

Copyright © 2018 CorSight2 OpenCamera 62 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

 13 Imprint

NET New Electronic Technology GmbH

Address:

Lerchenberg 7

D-86923 Finning

Germany

Contact:

Phone: +49-88 06-92 34-0

Fax: +49-88 06-92 34-77

www.net-gmbh.com

E-mail: info@net-gmbh.com

VAT- ID: DE 811948278

Register Court: Augsburg HRB 18494

Copyright © 2017 NEW ELECTRONIC TECHNOLOGY GMBH

All data and illustrations in this manual are subject to errors, omissions and change without notice.

All rights reserved.

Copyright © 2018 CorSight2 OpenCamera 63 / 63

New Electronic Technology GmbH Reference Manual Rev1.03-180323

